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INTRODUCTION

This report presents the work done and the results obtained during the
year December 1966 - November 1967. Certain parts of the material contained
in this report have been presented in the three quarterly reports submitted
previously. Repetition of this material was deemed desirable, however, in the
interest of making this report a presentation of the totality of the work done
on the research contract up to the present time with no necessity for referring
to the previous quarterly reports.

Each chapter is intended to be a complete presentation of its own material,
with no cross-referencing among the individual chapters., TFor convenience, the
references associated with each chapter are included at the end of the particular
chapter. 1In the interest of clarity and continuity of presentation, some dupli-
cation will be noted in various chapters.

Chapter 1 contains the work related to optimal guidance of low-thrust,
interplanetary space vehicles. Both the deterministic and stochastic versions
of this problem are discussed.

The estimation and control aspects associated with the problem of soft
landing on a planet with unknown atmospheres is discussed in Chapter 2., One and
two degrees of freedom for the space vehicle are considered. An example is
given in an appendix to illustrate methods by which the estimation equations may
be simplified.

The problem of minimum energy control of electric propulsion systems is
considered in Chapter 3. The controllers for various types of terminal constraints
is discussed.

Chapter 4 contains a discussion of sensitivity considerations in the design

of feedback systems,




2
CHAPTER 1

OPTIMAL GUIDANCE OF LOW-THRUST, INTERPIANETARY SPACE VEHICLES

l.1l.Introduction and General Discussion.

In the past few years much interest has been developed in the use
of ion-propulsion for space missions. The low-thrust ion engine will
probably find its most important application in missions to the outer
planets where the retarding effect of the sun's gravity will require a
large space vehicle energy. Up to the present, all the energy (velocity)
has been provided by the launch vehicle., For high energy missions, such
as those to the outer planets, it seems desirable to use high impulse
low-thrust engines to augment the energy supplied by the boost vehicle,
These low-thrust devices would operate during the long flight times between
launch and encounter supplying a higher specific impulse than that available
from present chemical boosters.

‘ For any space mission, a nominal or desired trajectory is determined.
This trajectory is completely specified in terms of a set of injection
conditions, and also a nominal thrust program. The nominal path selected
usually represents a compromise between many conflicting factors such as
launch energy required, arrival date, telemetering and tracking considera-
tions, ion-engine fuel required, etc. In many cases, the nominal thrust
program represents the "optimal control" in the sense that it minimizes a
particular mathematical performance functional. However, if we use the same
Performance functional to synthesize a guidance system, and temporarily
ignore the influence of noise inputs to the system, then rather large errors
may result at encounter, The reason for this Will be brought out in Seection 3-D.

Because of launch energy dispersion and random effects in flight, the
spacecraft will inevitably be perturbed away from its standard path. It is

‘ then the job of the guidance system to provide trajectory corrections which




not only ensure that the vehicle approaches its destination in the intended
fashion, but also provide that the vehicle remains as close as is practical
to the nominal orbit in order to guarantee the compromises chosengz) It is
also desirable that the guidance system be as efficient as possible in per-

forming these tasks., The following are three guidance schemes that one

may consider:

(a) Midcourse guidance = This method, currently being employed in space
missions, uses high thrust impulsive forces, applied at one or two points,
in order to nullify the injection errors. This technique would not be
practical in low-thrust missions, however, since the random disturbances
that could be expected are enormously greater than those encountered on
ballistic trajectories. It is because of these large disturbances that a
continuous guidance strategy would be necessary.

(b) Second variation technique(3)’(h)’(5) - This method essentially repre-

sents a partial solution to a general feedback optimal control problem, By
-‘application of this technique, one obtains all optimal trajectories, and

their associated optimal thrust programs, in a region near the nominal path

in the state space. Although it is very elegant, this method unfortunately
suffers from some inherent drawbacks, One of these is that time varying
feedback gains are usually required, and implementation problems become
apparent, Another disadvantage, which is far more serious, is that intoler-
ably large errors may result at encounter owing to the presence of disturbances.
An analysis of how this phenomenon arises is given in Section 3-D.

(¢) Return to the nominal trajectory(6)’(7) - This approach presumes that

small biases are allowed on the ion engine thrust vector magnitude and
orientation. Such biases are utilized in control strategies, and permit
returning the space vehicle to the neighborhood of the nominal trajectory

using a minimum amount of fuel. As one has undoubtedly inferred from the above




discussion, noise plays a decisive role in the low-thrust guildance problem,
We saw how the above mentioned guidance methods, which are certainly accurate
in the small noise case, turn out to be quite undesirable in the problem we
are now confronted with. The method we now propose achieves the desired
guidance accuracy even in the event that the expected disturbances become

as large as the control which we have available.

One might use the following analogy to describe the strategy now being
suggested. We conceive of a small car enroute across a desert on which high
velocity omnidirectional winds are present. As every small car owner knows,
a strong gust of wind can cause a non-negligible deviation from the intended
course, However, instead of planning an entirely new route, we are much more
tempted to return to the original course in order to prepare for future gusts.
If we didn't use such a strategy, several properly oriented gusts could bring
very unfortunate consequences,

In addition to its accuracy, this guidance technique also has other
advantages:

(1) Low fuel consumption. In fact, the guidance system is designed to

minimize the fuel required to make trajectory corrections. For
instance, approximately .2% of the total available fuel would be
necessary to correct the largest expected injection errors of a
Mar's mission.

(ii) Mechanization simplicity. This is because only discrete values of

the control variables are needed. Therefore a guidance command
would represent switching from one of nine different control config-
urations to another. It is important to realize that the discrete
nature of the control policy is not a constraint, but rather is the

result of employing a minimum fuel controller.




(1ii) Independent of nominal thrust program. This means that the ion

engine could be preprogrammed to execute a particular thrust
function, and the guidance system in no way modifies this program.
We now set out to concisely formulate the problem mathematically., We

shall consider both the deterministic and stochastic problems, in that order.

Ll.2.Formulation and Solution of the Deterministic Problem.

A. Assumptions.

The system model, or plant, is based on the following assumptions:

(a) The space vehicle is in heliocentric flight, This assumption is
based on the fact that the ion propulsion would be initiated three
days after launch.,(l> and hence the vehicle would be free of the
earth's gravitational field.

(b) Spacecraft motion is constrained to one plane, This is considered
a valid initial assumption and a desirable characteristic of space
trajectories,

(c) The nominal thrust program consists of an angle history, a(t),
and a thrust history, un(t) (Fig. 1-1). Mass and power availability

variations are accounted for in un(t).

B, Available Control.

As one degree of freedom we will allow small, discrete thrust level changes.
We need only consider discrete controls since the minimum fuel controller is a
"bang-bang" controller, Ion propulsion systems will consist of an array of
thrustors as depicted in Fig. 1-2. This configuration lends itself very
nicely to discretely throttling the engine. Since modules will be held in
(8)

reserve, these could be used to provide a step increase in the thrust level,

Similarly, a step decrease in thrust could be obtained by shutting down modules




which are symmetric with respect to the spacecraft's center of gravity.

In addition to these thrust variations, we will alsoc allow small dis-
crete attitude variations about the yaw axis. More precisely, we will allow
a rotation of the spacecraft itself, independent of the nominal attitude
history obtained by rotating only the engine. This method leads to much
simpler system implementation. We may only allow small vériations in the
yaw angle because the solar panels, from which the spacecraft receives its
power, must be oriented toward the sun. In summary, the nine allowable
states of the thrust vector are represented in Fig, 1-3.

At this point we may also include the observation that the nominal
thrust program would very likely be designed as a step function in both the
angle and thrust level variables - that is, both of these quantities would
be held fixed over a finite number of time intervals., This is especially
probable in the thrust level program as a result of the design of electric
propulsion devices as an array of individual engines. Although we do not
incorporate the discrete nature of the thrust program as a constraint, it
will be useful, in some instances, to consider this possibility.

C. DPerformance Criteria,

Basically there are two performance indices which are meaningful in this
problem, The first is the minimum time criterion which indicates the desir-
ability of returning the space vehicle to nominal trajectory as quickly as
possible, and thereby maintaining flight along the standard path for as much
of the voyage as possible. The second performance index which is extremely
meaningful here is that of minimum fuel, or returning the space vehicle to the
standard orbit with as little expenditure of propellant as possible., It will
presently be shown that these two criteria are, for all practical purposes,

equivalent in this problem., For that reason they will be used interchangeably.




D, First Solution.

The coordinate frames we will be considering appear in Fig. 1-1. The
coordinate frame (xl, x3) has its origin at time t at the point in space
where a vehicle on the nominal trajectory would at time t, assuming flight
begins at t = 0. Note that the angle B(t) is determined by the nominal
trajectory desired and is thus a function of time only. The differential

equations of vehicle motion in the (xi, xé) frame are as follows:

0'— 'é
Xy =X, = Fl
s - GMS(xi + D)
P () D) ()R
u(t) (x2 cos(y + a) + (x! + D) sin(y + @)
AL i e
2 1/2 -
(G + D)%+ (e))Y g
(1-1)
v _ o1 D
x3 =X = F3
- GM_ x!
X = %L = s 3

; 2 N2 \3/2
(G + D)7 + (x)?)3°

u(t) ((xi + D) cos(a + vy) = xé sin(a + v)) A g
L

¥ ; 2 e\1/2
(g + D)7 + )P

'where G 1is a constant of gravitation, MS is the mass of the sun, and
W, Y, O and D are defined in Figs. 1-1 and 1-3.

In vector notation, Eq.(1l-1) becomes

X' = Fu, Y, X")



T 1 1 1 1 — i
where X' = col(xj, X35 X3, X)) and F = col(F,, Foy Fa, F,). If at time

T we have deviations X(7) = col[xl(T), xz(T), X3(T)’ Xh(T)J from the
nominal trajectory, then the problem is to find the controls s

u(t), v(t) O<T<tsT
subject to control constraint shown in Fig, 1-3 such that

X(T) =0

and either of the performance indices

s T
(2) dt (b) " u(t) at
0 0

is minimized,

Referring to Fig. 1l-k, consider the following coordinate transformation:

' xq cos(B + a) + x?: sin(B + )

(1-2)

! sin(B + a) + x! cos(B + a)

-Xl 3

Differentiating these equations twice yields

o]
I

It = %] cos(p + a) + x} sin(B + &) - xj(f + &) sin(p + a)

+ x3'(é + Q) cos(B + o) éxé'

cos(B + a) + x3' sin(B + &) - in(é + @) sin(p + a)

- xi(é + &)2 cos(B + a) - xi(é + &) sin(B + a) + 2x?')((3 + d) cos(B + a)

te re _ 2%
Xl X2 —Xl

- x;(é + &)2 sin(B + a) + X;(é + &3 cos(B + a)
J ]




>'c3" = - }'Cl sin(p + o) + x3' cos(B + a) - xi(B + Q) cos(B + Q)
- xé(é + Q) sin(B + o) 2 x !
X! = ;:&' = - }.ci sin(p + a) + ).c.?') cos(B + a) - Z}Ei(é + Q) cos(B + Q)

+

x}(B+ &)° sin(B+ @) - xI(B'+ &) cos(p + a) - 2x!(p + &) sin(p + @)

x?‘)(é + @) cos(B + a) - x3’(é‘+ a) sin(g + ) (1-3)

Ietting the subscript n denote the nominal values of the variables

X'', u, v, and X', Eq.(1-3) can be written
Xﬁ' + 6X'' = R(t) F(u, + 6., Y, + &Y, XP o+ X) + s(t) (X! + X) (1-k4)

where 6&X'', 611’ and 8y are deviations from nominal values, and the

matrices R(t) and S(t) are defined by

cos(B + a) 0 sin(B + a) 0 E

0 cos(B + Q) 0 sin(p + @) !
R(t) 2 | ; (1-5a)

} -sin(p + ) 0 cos(B + a) 0 i

| 0 -sin(B + @) 0 cos(B + )

- -

| -(Bra) sin(p+ar) 0 (B+q) cos(prar) 0 }

-(Bd) sin(a)  -2(Bd) sin(pra)  -(Br) cos(Bra)  2(Brd) cos(Brar) |
sey & =(B+d) sin(pra) -(8+) s 1n(pra)

- =(B+a) cos(pra) 0 -(B+@) sin(p+a) 0

-(BiG) cos(prar)  -2(Brd) cos(Bra)  -(BHGY sin(Bra)  -2(f+) sin(pra)
4 (Brd)%sin(pra) - (+6)Ccos (Bra)

——

(1-5b)
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In space trajectory problems such as this one, linearization of the dynamical
equations about the nominal path often yields satisfactory approximations to
the true physical situation., This statement is supported by the fact that

we are striving to keep the vehicle in the neighborhood of the nominal tra-
Jectory, and also that the quantities su and &y are "small" in relation

to their nominal values. Hence, we carry out a Taylor series expansion of

Eq.(1-4), which yields
711 T _ ' ' t
Xn + 8X'' = R(t) (F(un,Yn:Xn) * FX'(un’Yn’Xn) X + Fu(unyyn;xn)éu
1 3 - ] -

+ Fy(un’Yn’Xn) 6y + (higher-order terms)) + S(t) (Xh + X) (1-6)

where F,, is the Jacobian matrix whose ij-th element aF./x!, is the
X 2 i/ g0

partial derivative of the ith component of F with respect to the jth component

of X'. Also, F,. = col[BFl/au, an/au, aFg/au, aFu/au] and similarly for
F .

Vv
!..... — — —
i 0 1 o0 o 0
. A 0O B 0 - sin(o#B)

F,, = ! F_ =

X** " 0o 0 0 1 ’ u 0 3
. C 0 D 0 cos (a+8)
r 0 |
(- u_ cos(Bta) |

F = . R ’

Y % 0

- u sin(o#p) |

o -—
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where

2
-GM_ + uh(xin + D) 3GMS(xin + D)

A= +
(g + D+ @ ID7E 0 (g, + D)+ (23D

- t 2 1
. u.n(xln + D) 3GMs(xln + D) xén

(g + D7+ (3D (g ¢ 07 4 )02
. 3GMSx§n(xin + D) un(z(xin + D)2 + (xén)z)
= +
(G + D)F + (302 (g, + 2P+ (x3)P)32
. GMS(Z(xén)z - (%], + D)2 unxén(xin + D)

(e + D7+ )PP (e + 2P+ ()Y

Defining the controls

and making suitable manipulations, Eq.(1-6) becomes

-

0 cos (B+at) 0
. A cos(p+a)+C sin(p+at) 0 A cos(p+a)+D sin(p+a)
8X' ' () 5
: 0 -sin(p+a) 0

-A sin(p+a)+C cos(p+x) 0 -B sin(p+a)+D cos(p+a)

owe

(1-7)

sin(pg+a)

; X(¢)
cos(B+a)f
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0 | 0
!
0 | 1
+ Cu (t) + S u, (t)
H : l’
30;2 i 0
P }
}1J , 0
P S {
r -1 sin p 0 L cos 0 ;
z *
i.. 2 o . o 2 . .
[ =i sln = poCcoS p -2p sin L eos U = u sin p 2U cos
+ | . . D¢
-l COS W 0 -p sin p 0
i e 2 . . . . 2 . . ,
. =M cOsS p + posinp ~2UL COS U -0 S1Nn U =~ U COS W =21 sin p

1 J—
—

(1-8)

where we have set p = B + @ and have neglected higher order terms.

We note that in general uy is a time varying function if w, is,
However, as has been mentioned above, uﬁ(t) would probably be a step
function as a practical consideration (if it is not, we approximate it with
a step function), and hence Uy - is piecewise constant., To gain more insight
into the problem, Eq.(1-8) will be simplified by neglecting small terms. The
quantities A, B, C and D are proportional to changes in the sun's gravity
and the angle B over a region in space near the nominal trajectory. These

quantities are of the order of lO"12 in mks units, and will therefore be

neglected. Similarly the quantities §# and éz are of the order of lO_lu,

and Q and @ would be smaller than that or zero. It can be seen, for
example, that in the Jupiter mission shown in Fig. 1-5 that o varies at a
slower rate than B. Of course, when o 1is a step function, & and & are
both zero., Finally it will be assumed that the quantities (& + é)x2 and

(& + é)xu are negligible with respect to uq and u,. Actually, typical values
6

for (B + &)XZ and (B + &)XH and lO-LL for u, and wu,..

would be 10~ 1 5

We expect the latter assumption to yield the largest error.

We use the physical reasoning above and the fact that
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e’ t
0O 1 © O% -4 sin p cos K L cos u ﬁnpi
0 00 0! 0 0 0 0
LX) =) . X(t)
0 0 O 1: -u Ccos u -sinp  -u sin p cos u
0 00 0 0 0 0 o
to obtain
T i ]
10 1 0 d} {07 fo'
{ j § : ’ j
) {0 00 0! 1 o
‘0 0 0 1 S0 | 0
! Lo j
Lo 00 0 o 1

It is evident from examining Eq.(1-9) that the four-dimensional minimum-
time problem has been reduced to twg two-dimensional problems, since the éxi'
and éxé' equations are decoupled from the 5x§' and éxﬁ' equations, The
(a) minimum-time and (b) minimum-fuel problems will now be solved by applying
the principles of optimal control theory. We will consider one two-dimensional

problem for each performance index.

Let

—_ 11 -
1t =y 8x Vo
then
. . _ (l_lo)
Y1 =93 o =1

The Hamiltonians for the two problems are

(a) H

1 + le2-+ xzu

(v) H=u+ MY, + AU
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The optimal controls minimize the Hamiltonian. Hence

(a) w = -k sgn(i)
(o) W' = -k sgn(l + 1)

where k 1s the maximum attainable value of the control variable wu. The

Lagrange multiplier equations for both problems are

whose solutions are

xl(t) = xl(o) xz(t) = - xl(o) t + xz(o) (1-11)

Equations (1-11) implies that one switching of the control wu is possible

in each case, Solving Eq.(1-10) for constant u yields

y(8) = 5 ut? + 7,(0) &+ y,(0)

vo(t) = ut + y,(0)

Eliminating t from these equations, we find that
2
20y (771 (0)) = (1,-7,(0)) + 27,(0) (y,-7,(0)) (1-12)
Equation (1~12) shows that the vehicle will follow a parabolic trajectory

in the (yl, y2) plane for constant u. Coupling this fact with the fact that

only one switching is optimal, the "switching boundary" is obtained, as shown




15

in Fig, 1-6, Hence, we conclude that the same control strategy is optimal
for both performance indices, The expected trajectory for a set of initial
deviations from the nominal trajectory is also shown in Fig. 1-6. Various
numerical experiments were performed using this solution for specific space
missions, and the results are reported in references (6) and (7).

E. Second Solution.

The motivation for the second solution is the desirability of obtaining
a more accurate approximation to the minimum-time (minimum-fuel) solution by
making larger use of digital computer capabilities.

The first step is to linearize Eq.(1-1) as follows:

7 _ ' _ ' 2
+ X(t) = F(un+6u, Yo+ 8V xn+x) = F(un,'yn,Xn) + F 6, + FYGY + FX

+ (higher-order terms)

As before, we neglect higher-order terms, and the terms A, B, C, and D in

Fyre Aléo, we use the definitions of uy (where un(t) is regarded as a

step function) and u, to obtain
?_O 1 0 0! % 0 1 z 0 |

. {0 0 0 0 ! cos(prar) -  -sin(p+a)

X(t) = § X(t) + 1 aul(t) + ;uz(t) (1-13a)
i i : i ;
i0 0 0 0 ; sin(p+a) . . cos(p+a) !

We now will regard o(t) as a step function and consider the following

transformation: - :
¢ cos O 0 sin o (0] ~1
3 1
~ % 0 cos ¢ 0 sin o
X=X ; T=| i
i=sin a 0 cos o 0 i
: . ;
: 0 -sin o 0 cos o |

Then Eq.(1l-13a) becomes
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= -1 = - =
01 0 0 F0 o | J u, |
: : 1
C 10 0 0 0. N cos(p+a)  =-sin(p+ar) | u
(T-JX):I _TJX+ { L2
0 0 0 lé : 0 0
000 O sin(pra)  cos(p+a) |
L — L -
and therefore _
0 1 0 0] Foo o 1 M)
H ! - H
. i : {
A 0 00 0! .. ' cos(Bra)  -sin(p+a) P u,
X =T TlX+T;‘ ; Lt (1-13b)
0O 0 0 1 i 0 0 _l
0 0 0 O sin(pra)  cos(B+) |
— — — -t
where -~
I\cos a 0 - sin ¢ 0] i
[ o cos ¢ 0] - sin o
oot o { 5
~sin o 0 cos o 0
0 sin o 0 cos
Eq.(1-13b) thus becomes
i + 1
g_o 10 0, o0 f o |
! 1 AU i
A !0 0 O O ~ | cospB | .= sin B
X = ; PX o+ ul(t) + ! uz(t)
' é -
_O 0 OO_E LsinB_J} ;cosBJ
For notational convenience we redefine
X=X
and obtain
— - -?. —
01 0 0! T oo | F 0 |
. 0O 0 0 O ; - cos B(t) - sin B(t) :
X(t) = P X(t) + w (t) + | -, (t) (1-13c)
{000 1] 0 i
i | ;
0 0 0 0° | sin B(t) cos B(t) |
. 4 L _ L .
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The differential equations for the Lagrange multipliers are then
)\.l-:O )\2=-)\l }\3=O >\1|»=-)\3
which have the solutions
)\.l(t) = )\1(0) )\Z(t) = -Kl(O)t + KZ(O) )\3("13) = )\3(0) )\Ll-(t) = -)\.3(O)t + }\u(O)
The optimal controls are therefore given by

uy (t)

- & sgn((-1 (0)% + 1,(0)) cos B(t) + (-A;(0)t + X,(0)) sin B(t))

(1-14)

]

u (8) = - X sgn((=a ()t + 1,(0))(=sin B(£)) + (-1,(0)t + 1,(0)) cos B(t))

Some possible realizations of Eq.(1-14) would be as in Fig, 1-7. (Note that B

is not eipected to éxceed 90 deg before nominal trajectory acquisition.) These

realizations suggest that each control would have a maximum of two switchings.
Now, given the initial conditions on Eq.(1-12), we can write the explicit

solution for X(T), where T is the nominal trajectory acquisition time.

That is,
? 0 ] r 0 ]
1

T

i cos B(t) L -sin B(t)

X(T) = &(1,0)X(0) + &(T,t) ! uy(t)at + ; &(T,t) u, (t)dt
0 L0 0 0

~sin B(t) cos B(t)

— Y

(1-15)
where @(tz,tl) is the fundamental matrix that satisfies the matrix differential

equation
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with @(tl,tl) = I. The solution of Eq.(1-16) is
)
[-l (tz-tl) 0 0 g

o 1 o o0

2" - 0 0 1 (t-t) (1-17)

0 0 0 1
Since the absolute values of u, and u. are constant, only the sign

1 2
of these quantities is needed inside the integrals of Eq.(1-15)., If we

designate ul(O) and uz(o) as the initial values of W oand u,, t; and

t2 as the switching times of u,, and t3 and th as the switching times

of u,, then Eq.(1-15) becames

o T [ ?3 Y T
X(T) = &(T,0)x(0) + u, (0) - + +u,(0) -+ (1-18)
N 0ty gy,

The integrals of Eq.(1~18) can be explicitly evaluated if we assume that
B varies at a constant rate., This is an excellent approximation for the tra-

Jectories of interest., Hence, if we assume that

ol o
e

B(t) = wt w = constant

and if we define
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2t 2 2t 2 cos agtz T sin T
I, = ul(O) —= sin oty + —5 cos wt; - — sin u)tz - 5 +
w w w w w
1 1 2t cos wt 2 sin wt 2%, cos wt 2 sin wt
+ =5 cos ol = — - u (0) - 3 3, 3, 4 4
2 2 2 2 2
w w w w w w

T cos T sin oT
- + 5
w w

2 . 2 . 1 . 2 2
Iz_ul(o)asm wtl-asm a)t2+5351n wT-uz(O)-Z)cos cnt3+acos wb),

1 1
- —= cos wl + —
w w

-Ztlcos a)tl 2 sin a)tl 2t2cos a)tz 2 sin a)tz T cos wT sin o

I3 = ul(,o),,, —  t — ) + = 5 - + S
a> w w w w w
2t 2 2t 2 cos ‘Dtu T sin oT
+u(O)—§sina>t + == sin wb, - — sin wt, - +
2 372 3 L B
® w aa w w
1 1
+ —5 cos ol - =
0 w
-2 cos (Dtl 2 1 1 2 2
I, = ul(o) + = cos a)tz - = cos af + =+ uz(o) ~ sin a)t3 - = sin at)

1 .
+ = sin T
w

then Eq. (1-18) becomes
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e

xl(T) = xl(O) + sz(O) -I,+ Tl

1 2 = G

12 2’ 3: t)_p T)

+
H
ie>

x,(T) T)

XZ(O) > G (tl’ 23 3)t1+:

\ (1-19)
x3(T) = x3(0) + Tx),(0) - I;+ T = 3( l,tz,ts,tu,T)

ne

xu(T)

+

x),(0) T, Gh(tl,tz,t3,tu,T)
Equations (1-19) are four equations in five unknowns. Since it is desired
that X(T) = 0, the problem is now to find the minimum value of T for which
Egs.(1-19) can be satisfied. Fortunately enough, these equations can be
solved by the Newton-Raphson technique, and such analysis indicates that the
minimum value of T 1is achieved either when T = tz or T = th' Hence one
control will have one switching, and the other will have two switchings, It
is fairly easy to determine the correct ul(O) and uz(O), and thereby
Egs.(1-19) can be solved for the minimum value of T and for the switching
times of the control variables,

The experimental results for the second solution, and how they relate to

the same experiments using the first solution, are given in References (6) and (7).

F. The Open Loop Problem - An Algorithm for Determining Minimum-Fuel and

Minimum-Time Trajectories,

At this point it is necessary to compute the exact open loop trajectories
in order to determine the accuracy of the closed loop systems already derived,
To do this, we first consider the differential equations for the deviations of

the state vector from nominal values:

4
1l
e
e
i

= F(X)u) Y) - F(xn:un’Yn)

2 6(t,%,u,v) (1-20)
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The performance indices we are considering are the following:

T T
(a) fu at (b) fdt T free, &X(T) =0
0 0

where we are given &X(0) = 8%

The Hamiltonians for the two problems are
(a) H=1u+ (,G(t,Xu,y)) (®) H =1+ (\G(t,X,u,v)) (1-21)

The optimal control minimizes the Hamiltonian at each instant of time,

In particular, it minimizes

>\2(x3 cos (y+a) + (xl+D) sin(y + a))
IT2
3

(a) M(u,y,xl,x3, Aoy ly,) =1

[ ’";_‘_—l

((xl+D)2 + X

. i
. )‘h((xf-D) cos(vy+a) + x3s1n(y+a)
((x#D)° + xg)l/z

(1-22)

u)\z(x3 cos(y+ar) + (xl+D) sin(y+a))

1
((xy#0)% + x5)°

(b) M(u, Y)xl,x3’ )\2: )\14-) =1-

u)\h((fo) cos (y+a) + X3 sin(y+a))

2y1/2
3)/

+

((xl+D)2 + X

We define for both cases



22

@l(xl,x3,x2,ku):ui e U {ul,uz,uS} u; minimizes M

éz(xl,xa,xz,Xu)=Yi e A= {Yl’Yg’Y3} Y; minimizes M

Note that @l and @2 are discontinuous functions whose partial derivatives
are zero with respect to all arguments (except at discontinuities). Also note
that @l and @2 are not explicitly known functions, but can be easily
calculated on the computer since only nine combinations of u and vy need

to be checked, Substituting Eq,(1-23) into Eq.(1-21) we obtain

*
(a) H =38 + <x,G(t,x,@l,@2)>
(1-24)
*
(b) H =1+ (x,G(t,x,@l,@2)>
The canonic equations are
. H*
X = A
(1-25)
. *
A== Hx
and the transversality condition gives
*
H(T) =0 (1-26)

We note here that quasilinearization cannot be used for this problem, since
¢, and @2 are discontinuous functions., It should also be mentioned that

the approximation-in-policy-space algorithm was tried, but does not converge
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for this problem. The main reason for this is probably because of the dis-
‘ continuities in the control. The motivation for the algorithm which follows
is the Newton-Raphson technique for solving non-linear equations. The basic
idea is to determine how the end conditions on &X and H* vary as functions
of T and the initial conditions on \A. One could normally approximate such
behavior by first linearizing the non-linear equations, and then using linear
differential equation techniques. This is the general attack in the quasiline-
arization method. As we have already pointed out, however, the method fails
here owing to the discontinuity of él and @2.

We now define the following quantities:

(03
T

® lox(r),

u¢w§=Euwa)=Em&

-

T
| s
ne>

(1-27)

Let C(()n) be the nth estimate of C,. Then in general E(Cc()n)) £Q

E(Cén)) ) 40

We would like to find Acén) such that




2k
This implies

ACén)= -Eal @) (1-28)
0

Equation (1-28) would be easy to solve for Acén) except for the fact that

we do not have an explicit expression for ECO. This matrix is approximated
in the algorithm by a perturbation technique. The algorithm is as follows:

(a) Guess Cél).

(b) Integrate Egs.(1-25) to obtain e(l) = E(Cél)).

(e) Perterb Cél) by an amount f Cél) where the scalar f << 1,

(d) Compute EC according to the following approximate formula:
0

- T

{

! El(Cél) + f cél)) - El(Cél)) . El(Cél) + f cél)) - El(Cél))

{ (1) (1)
E = I . .
CO ;

f ES(Cél) + f cél)) - Es(cél)) . Es(cél) + f cél)) - E5(Cél))

(1) 1
£ Coy £ 005)

de

o

(f) Repeat this process until the solution converges.

(e) Calculate E-T , then obtain Acél) from Eq.(1-28).

The computer results for both the minimum-fuel and minimum-time problems
are shown in Figs.(1-8)-(1-13). In addition the trajectories obtained by using
the closed loop controller derived in the second solution are included for
comparison purposes. We first note that the differences between the trajectories

for the non-linear minimum-fuel and minimum-time problems are small, as was
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predicted by the analysis at the end of Section D. As a second consideration,
we observe that the linearized controller gives a very good approximation to
the exact optimal solution, One aspect of the extremal trajectories that was
lost by linearization, however, is the time interval when vy = 0, It is
interesting to note, though, that this "coast period" has little effect on the
performance index. We conclude that the rather negligible degradation in
system performance which results from linearization is more than compensated

for by the comparative simplicity of controller implementation.

1.3.Formulation and Solution of the Stochastic Problem,

A, Introduction.

A spacecraft which is propelled and guided by a low-thrust ion-engine will
be subjected to random disturbances. Undoubtedly the sources of these distur-
bances are many, but they will contribute to produce the two stochastie pro-
cesses of interest:

(a) the attitude (yaw) angle of the vehicle

(b) the low-thrust acceleration magnitude.
These processes will have a significant effect on the trajectory which the space
vehicle follows, and for that reason the guidance problem becomes crucial,
Herein is a study of that problem,

B, The Problem,

In previous sections the low thrust guidance problem has been formulated
for the deterministic case. The underlying idea was to return the vehicle to the
nominal trajectory in a minimum amount of time (or, equivalently, using minimum
fuel). The reasons for doing this have already been pointed out and will not be
reiterated here. The stochastic formulation will be different for two reasons.
First, it is unrealistic in the stochastic problem to require the state deviations

to be zero at the terminal time, In many cases, such a constraint would lead to
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meaningless results. Instead, a neighborhood of the origin will be defined
as the set of desired final states, Second, the minimum time criterion is

no longer applicable since, in generalz the time required to reach the target
set is a random variable. A reasonable approach to this problem is to
minimize the average time required for this task,

It was shown in the first deterministic solution that the guidance problem
could be analytically reduced to controlling two independent, double-integrator
plants. This "separation" property will be exploited here since it closely
approximates the dynamical characteristics of the space vehicle.

C. The Noise Model.

One of the most important questions is how to model the noises acting on
the system. Invariably one is forced to make approximations and ;ssumptions
since a complete characterization of a random process is virtually impossible,
However, the essential features of a stochastic process can and should be
retained by an examination of available data. The essential features we have
strived to include in our stochastic model are the following:

(a) the mean value (u)

(b) the range of variation, or standard deviation (o)

(c) the rate at which the process varies, or the correlation time (1/8).
If these quantities are not available a priori, it would be necessary to esti-
mate them in flight. It is not unrealistic, however, to assume that they are

available from preflight test data.

A stochastic model which retains all of these features as parameters is

the Ornstein-Uhlenbeck (0U) processglo) The control variable wu; (or wu,)
can therefore be represented as follows: .

ul(t) =Uu + x3(t) (1-29)
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where g is an OU process with zero mean, variance 02, and correlation time
l/B. A typical sample function for this stochastic process 1s given in Fig,
1- 17. If a suitable interpretation is given to the solution of a stochastic

differential equation, it can be shown that the process x3(t) satisfies the

following Langevin equation

i3 = - pxg + §(t) (1-30)

where §(t) is zero mean, Gaussian, white noise with variance o-.

We can summarize the discussions above with the following problem formu-
lation (note that only one of the two two-dimensional problems of Eq.(1-9),
Section 2, need be considered):

PIANT: xl = x2

5 | (1-31)

e
w
1
1
w
»
w
+
us

T
g

E [at ,  X(T)eN,
0

where NO is the neighborhood of the origin referred to previously, and

X = col(xl,xg,x3). It will initially be assumed that the state is known
exactly. Then we will consider the more realistic case where the state is not
precisely known. Before we begin the analysis of these problems, however, it
would be of considerable interest to determine the performance of other guidance

systems under the influence of the same stochastic disturbances.
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D. Analysis of the Second Variation Guidance Technique in the Presence

of Stochastic Disturbances.

One guidance technique that has attracted much attention recently is the
method of neighboring optimal trajectories, otherwise known as the second
variation technique§3)’(u)’(5) As was pointed out in Section 1, this scheme
essentially yields the feedback solution of an optimization problem in a
small region of the state space around the nominal trajectory. Of course,
it is not necessary to use the second variation technique to obtain this
feedback solution. For example, if at each instant of time one could recompute
the open loop nominal trajectory based on the current state of the system, the
same effect would be achieved, When this deterministic controller is blindly
used in a noisy system, however, one may be surprised to find that a rather
undesirable system performance results. The reason for this will become clear
in the following analysis,

As a starting point we assume that the plant equations and the performance
index have been specified. In addition, we presume that the associated nominal
trajectory has been calculated, According to the theory of the second variation,
the approximate feedback solution is obtained by solving the following equivalent

linear problem:

PIANT:
2 X 2 *
. 3H K
== % T, ™ (1-32)

PERFORMANCE INDEX:

T . * - * 5 *
] R 1 _a_I;I st v A . 8Xéu (1-33)
6 Ju C X JuXi

along with suitably specified (linearized) terminal boundary conditions. Here,

H represents the prehamiltonian of the original problem, and the * indicates
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that a quantity is to be evaluated along the nominal trajectory. Thus
. Eqs.(1-32) and (1-33) yield a linear regulator problem whose solution can
be exactly determined. We now wish to investigate this problem within a
fairly general framework so as to obtain the dominant characteristics of
the class of problems of interest,
First we need to make the observation that the weighting matrices in
Eq.(1-33) act in such a way that &u and 0X are penalized with approximately
equal value for a given percentage change in nominal values. Another way of
stating the same thing is that within a field of neighboring optimal trajec-
tories small changes in the state X are caused by proportionately small
changes in the control wu. We will therefore assume that the weighting
matrices can be approximated by constants whose values tend to produce the
effect described above, Of course, an exact analysis would be totally dependent
on the individual problem. Here we are attempting only to obtain the gross
. effects in a wide class of problems, and justification depends on comparison
with particular cases,
Since Eq.(1-32) simply represents the linearized plant equations, we will
use the equations obtained in Section 2 (Eq.(1-9)). In keeping with the dis-

cussion above, we will use the following performance index:

‘1 0 o o - -1

: . | - :
T ! i g C2 0

30 Cl 0 © : ? n
'j‘ax 5 o o 1 0 % & + &u E g du dt (1-34)
0 ; -2

0 0 o ¢ L 0 Czj

i i

2 2
where the constants Cl and 02 are chosen such that Xnom and unom are

given equal weight. Now, from the theory of the linear regulator problem, the

*
‘ optimal control §u  is given by

** See Appendix A.
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* -
su =--32:RleP5x (1-35)

where the matrix P satisfies the differential equation

By PA+ATP-%PbR-leP+ 2Q = 0 (1-36)
Here
01 0 0] 00 ~ - 1 0 0 o |
-2

; sCZ o
0 0 0 0 10, } ' 0 ¢ 0 O
A = H b:j o R = : H Q = :
0 0 0 1 0 0 : | O 0 0 0 |
: ' K "2‘ ¥ )
) 0 Gy a ‘
0 0 0 0| L0 1, L i (0 0 0 o

and the boundary condition on Eq.(1-36) depends on the transversality condition

of the particular optimization problem, Since for all space missions the value

of the terminal time T is very large, the matrix P would assume its station-
ary, or asymptotic value through most of the flight. We therefore solve Eq,(1-36)
as an algebraic equation by setting P - 0. Doing this yields the following

control law (because of symmetry, we only consider one two-dimensional problem):

\

* | 2
6ul = - 026xl "\ 202 + C 02 &x

1 2

Therefore, the spacecraft state deviations will obey the following differential

equations:

fe 1T T

6xl i | 0 1l ‘ §6Xl§

P P i
= S (1-37)

. § % / 2 { :

6x2 i i-Cz -\'202 + ClC2 iéng

L 4k L4
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We now must analyze the performance of this system in the presence of noise,
Using the same noise model described in Section C, we are led to the following

Langevin equation:

3 B 1 7 =
(6X1 i 0 1 o | Féxl {_ 0
- - - ; { }
6x2 é = 02 \,ZC2 + Clc2 1 : g 6x2 + % 0 % (1-38)
e 0 0 -8 | & ‘o E(t)
L 3 _ i 3, : i
-~ “~ 4

where the new state, x3, is the Ornstein-Uhlenbeck process, and E(t) is a
zero mean, Gaussian, white noise with unit variance. Now, according to the
Fokker-Planck theory, the state of the system described by Eq.(1-38) is com-
pletely represented at each instant of time by a Gaussian density function,
and the covariance matrix, M, of this density satisfies the following

(9,

differential equation

M= DM+ MDY + GGT : (1-39)
where I . i
0 1 0 0
D = c 20+ é“éz 1 G=1{0
T T e TRt T e 3 =
0 0] - o
- — -

and the boundary condition 1s the prespecified initial covariance matrix, M(0),
We again use the fact that the time necessary for the space flight is very
large, and M will necessarily converge to its asymptotic value. Therefore

we solve Eq.(1-39) with M = O and find
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i 2 i 2
1 +\’,/ CICZ + ClCZ " o \/ L.Cz + Cluz "
C, BC, 22 B 22
M= 0 M \f;br~; CYCZ M
- i 22 y Y2 172 22
i 2 . -
{ 2C. + C,C /
A I A / > o
! 5 M, \ 2C, + C.C, M,, o”/2p
where
o° /28
Moo = ; ,
C. 2C. + C.C2 —
2 772 172

2 2
- + 202 + ClC2 + 5.202 + ClC2

The values of Mll and M22’ which represent the standard deviations
of the spacecraft position deviations and velocity deviations respectively,
are plotted in Figs., (1-14) and (1-15) as a function of the attitude control
limit cycle time, For the purpose of evaluating these quantities, the follow-

ing nominal system parameters have been assumed

THRUST = 1 oz.
SPACECRAFT WEIGHT = 2500 lbs.

ATTITUDE CONTROL DEADBAND = 1°

Examination of Figs. (1-1k4) and (1-15) reveals that truly enormous errors may
result from using this guidance strategy. An intuitive picture of why this

happens is fairly easy to see. That is, when the spacecraft deviates from the
nominal trajectory, the new optimal thrust program assumes a form such that the

course of the vehicle is corrected in a relatively gradual fashion. This is
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perfectly all right to do in a deterministic system where there is no noise
present to produce any further deviations. However, since large disturbances
do act on the system we can only expect that by correcting the space vehicle's
course very slowly, we give the noise more time to draw the vehicle even
farther away from the nominal trajectory. This effect builds upon itself

until steady state deviations are attained, as shown in Figs, (1-14) and (1-15).
We must emphasize here that the errors we are considering are those resulting
from the control policy only, and do not include the covariance of the state
estimation, which would represent a lower bound on the accuracy of the space
mission,

The conclusion we can draw from this analysis is that as the magnitude of
the disturbances approaches the magnitude of the control available to the
system, then a deterministic guidance policy seems to be quite inaccurate. It
is apparent that a more aggressive error correction policy should be used in
order to achieve the accuracy desired. Intuitively we sense that in problems
of this type, where the available control is very small, that we must use all
the control available all of the time in order to combat the effect of the noise
inputs to the system. We now return to considering an approach which does just
that.

E. The Stochastic Minimum Time Problem with Known State Variables.

In order to solve the problem formulated in Section C, we consider the

method of dynamic programming., The first step is to define

- _
v(7,C) = Min E | dt X(7) =C (1-40)
u(t) |-
T<t<T

where we have regarded wu - the mean value of u, =-asa control variable,

We can rewrite the right hand side of Eq.(1-40) as follows:
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V(T,C) = Min A+ E[(t+a, X(1+8))|X(T) = ¢ + 0(a?%)
u(t)

P S
TSCSAHT

A+ Min  p(X(ma)|X(T) = ) V(Ta,X(T+8))dX + 0(a%)  (1-41)

Yox
where p(X(T+a)|X(T) = C) is the probability density of the state vector at
time T+ A given X(T) = C (the transition probability density function).
This quantity is obtained by solving the associated Fokker-Planck equation.
Equation (1-41) is the building block by which we can generate numerical solu-
tions to the problem, The approximation in policy space algorithm is employed,
and basically this method involves the following steps:

1. Guess VO(T,C)

2. Compute V (7,C) = A+ Min E[v, _,(7+8, X(1+a))|X(7)]

3. Iterate until the solutizn converges.
We are now ready to solve for the transition probability density function.

F, The Fokker-Planck Equation,

Doob(ll) has shown that the solution of Eq.(1-31) will be a Markov process

which can be defined by its transition probability density function

p(o, X5 t, X) (1-k2)

o’
which is the probability density that X(t) =X given X(o) = X . In
addition, it can be shown that this probability density function satisfies the

Fokker-Planck equation associated with Eq.(1-31):

2
@=bﬂ-x26_1°_-u9.9_-x3ép_+ap+ax3ip- (1-43)
at x X x & for.e

3 1 2 2 3
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2
where b = %—. In order to solve Eq,.(1-43) we regard u as a constant. This

is consistent with the fact that only discrete values of control are allowed,

and also that wu 1s held constant over the time interval A in the dynamic

programming solution. The boundary condition on Eg.(1-43) is

lim p(O,Xo; t,X) = 6(xl-xlo) 6(x2-x20) 6(x3-x30) (1-l4k)
t-0
We proceed now to solve Eq.(1l-43) using the Fourier transform technique. First

we transform Eq.(1-43) in Xy

- -ik_x 2 -ik_x - -ik.x - -ik.x
fég e 1 ldxl -.[£ e pg e 1 ldxl X, EB— e 1 ldxl + !u.EEL e 1 ldxl
ot o Sy o,
~ik.x ~ =ik.x . -ik.x
o e Tl spipe Tlax -p x Eo Tl o (1-145)
3 1 1 -3 1
X J B ax
2 3
If we define
-ik.x
1. A,
) pe dxl =D (t,kl,xz,x3)
then Eq.(1-45) becomes
2' 1 a' 1
® b 2 PZ + iklxzp' rou 2y X3 2 . Bp' - BX3 P 0 (1-46)
ot ax3 axz axz ax3
Transforming Eq.(1-46) in x, and defining
A S
'jp'e dx, = p”(t,kl,kz,XS)




we obtain

2
11 Tt
B 2R, ik

2 1
at ax3

Finally, defining

-ik
J[f"e 3X3dx

we have

~ ~

B o) p-x B

ot Bkz

which becomes

~ ~

Xk &

apll

¥

3

+

s s 1e s 1o _
(i) + u ikp'' + x31k2p

A

iuk,p + ik, (1) P _gp+ opp+ pk
%k

s (Bk3-k2)

ot 8k2

3
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(b)), 5,k )

~

3

~

2 .
+ (bk3 + 1uk2) p=20

3

~

o
ok

=0

Equation (1-48) is a linear first order partial differential equation which has

the characteristic equations

dk

QE
ds

s
T -

|
™
&

1
o

These equations have the solutions (subscript o indicates initial values)

1
15 =0 3

dk

2
]

- (131\:32 + fuk)) P

t=s 3 kl = klO = - klos + kZO H
Bs
k. s k k. e k
k3 _ eBSk3O _ _10 ;O 10 + 20 (l-eBS)
p B p

(1-49)
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s Bs! \ 2
~ ~ - k st k k. e k ‘.
, 1 |
= 2(0) exp - | b oS K, - 100 Jéo N 1o2 29 (1 oBS )
% BB B j
+Au(- kst + ko) ds') (1-50)

|

Performing the integration in Eq.(1-50) and collecting terms yields

~ ~ . 3 Bs 2 2Bs
] 2se s e 1
= p(0) exp - bk 2 S Pk - X
1&0 \36 —E 265 255,
+ k 2 s + e265 ZeBS + 3 + k3 2 eZBS 1l 52 + ZseBs ZeBS
2 - ' - i ) O
20 B 253 33 233 0 28 28| 10 20‘ B2 53 B
|
2Bs Bs 2Bs Bs 2Bs ¢
1 2s e 2se e 1 2e 1 e
TT -3 t R Tt "3 T -5 -3
B 63 B 3 B 33 63: 203 B2 32 B
]
ius .
-5 K+ lu ks (1-51)
We now impose the boundary condition as follows:
1 3 - ikloxl 1k ¥z 1k3ox3
(0, X 38,%),%),%3) = (5= P(s’ 10" F20%30)¢ © “e k) oKy otk

But

p(O’Xlo’"20”‘3050”‘10’Xz:o’x3o) = 80k =xp5) B(xy-x0) 8(x3-x3,)

3

X
H1010_ 20 20, ks %30
p<° 5o 20’1‘30)e dkey o, 43k

1
mlp
2

Thus we must have
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-lklel —1k20x2 -1k30x3(ix

| [6 (x;-%15) é(xz-xzo)é(x3-x3o)e e e 18x,dx =

B A(o Kk k) - 'lkloxloe'1kzoxzoe'1k3ox3o
= PO S0 %000 %30/ =

(1-52)

Using Eq.(1-52), and solving Egs.(1-49) for s, k) K, and k30, Eq.(1-51)

becomes
. | ke x e'Bth k, kK ot
P =exp-ikx  + i(k+k,t) x, + i S-S -+t —=+ =+ ke x
%0 2 1% %0 o 22 " . " 3¢ %30
3 Bt .2 2Bt | 2Bt Bt
2t t 2te t e 2t e 2e 3
+ Dbk —s+ -+ + - =+ (k+k t)" ==+ - +
Lisg? gt g & o e 21 g g B
k e-B.t k e-Btk k k.t 2 eth 1
Ky 1 2 fp kK -8t
+ s s -t —+ — ¢ k3e - — +kl(k2+klt)
B B BB B 28 28
t2 otePt 2Pt 1 oy 2B ke P* k) e'Btk2 K, kgt
- — + - -— - + k - —_— e —— —_
I N
82 8 8 g B e 85 s B B
. -ztePt oTPT ke Pt K e-Btkz k, kg
+]::3e"B = + -3 ¢ (k2+klt) T s S - — =
B B B B B B B >
Bt 2pt L .2
+ k3e'Bt ESE‘ - EE - - iut k) + du(k,ek, )t (1-53)
B B B 2
Simplifying Eq.(1-53) and collecting terms, we finally obtain
R 3 2 -28t.
P=exp-k12-m-'—2-%€—+%(l-Ze-Bt)+-b— 1._¢ ‘- +RZZE§-+b—3-3/Z
3B B B” 2 2 B B
-2pt -2Bt 2 )
+2e-[3t-e +k32p________be i+klk2%+% -2+e2-6t+ﬂ2,11+e26)c
2 % 2B | B° B :
- 2¢7Pt ‘+ Kk 2.1+ o3Pt 2e~Pt + kk 2 ~2e~Pt + 2 e3Pt
j 2 3. 173 52 5
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+iklx + x_. .t + x

10 ¥ *20 30 T2 Tt * ARy Xon F X3

. -8t
+ 1k3(e X3O)

(1-54)

This expression can be recognized as the characteristic function of a Gaussian

density with mean values

X, = x + x_.t+ x e—Bt-:}_+EE+}£
1 10 20 30 B2 B2 B 5
= 1 Pt
x2=x20+x3o E- 5 + ut
- -Bt
Xy = e Xy,
and covariance matrix (X)
L3 2 -2Bt
-2 bto  bt® bt Bty b 1
k. =E[(x;-x,)"] = 2 == = ==+ (L =-2F") # = =
11 171 AR 50 2 )
-2t
-2 bt b B
k. =E[(x,=x,)"]1 =2 =+ = =-3/2+ 2e -
22 272 PRI -
: -2t
- \2 ,b___be
k33 = E[(x3-x3) 1 =2 7B __55——!
_ - bt® bt -8t, b 28t
ki, = E[(xl-xl)(xz-xz)] = ;2—4- ; (-2 + 2 77) + ;’-T (L+e
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_ - =y _b_ 2t _ -Bt
k23 = E[(xz-xz)(x3-x3)] = 52 (L+e -2e ")

bt -8ty b -28t
—2-(-2e )+—-3-(l-e )

k13 = E[(xl-El) (x3-§3)] = ; n

Of course, x, could be carried along in the analysis as a possible refine-

3

ment, but here we will only concern ourselves with the marginal density of

and x and

Xy o )
1

is (KK=K"3; X =

will be integrated out of these equations., The result

X
=)
2

[X

P(O:xlo:xzo:x3oit:xl:x2) - . §
: - |
ke - 13 - kk23kk13[
. T, 11 kk33 12 kk33 ,
- o (X-}_(l) : 2
1 2 ‘ kk__kk kk : =
- : 23713 23 l (X-X)
172 1z © Kk, - —f2=2 kk__ - |
2 |X| (kk33) | 12 Kk 22 Eigg' |

- - (1-55)

Equation (1-55) is used in conjunction with Eq.(1-41) to carry out the numerical
analysis of the stochastic minimum time problem,

G. Numerical Results with Known State.

As has already been indicated, the approximation in policy space
algorithm was used in the analysis. The initial guess for the value function
was given by the deterministic solution to the same problem., The target
neighborhood of the origin was taken as a rectangular area with boundaries
at * 40 meters in the x, direction, and + .05 meter/sec. in the X,

direction, Grid sizes of 10 meters and .025 meter/sec. were used and gave the

desired accuracy. Due to considerations of computing time, the area of interest
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was limited to + 1 km., by % .25 m.sec, Of course, solutions in larger
regions could be obtained if desired, Insight into the general solution
characteristics can be acquired, however, from the results in the area that
was considered.

The results appear in Fig, 1-16, A total of four runs were made and the
resulting switching curves are shown for each case. Two runs were made using
a correlation time of 20 minutes for the attitude control limit cycle. It
should be noted that decreasing the correlation time has the same effect as
decreasing the variance of the noise. It is interesting to note that as the
noise gets large -- i.e., with its standard deviation equal to the value of
the control magnitude -~ then the switching curve is pushed back near to the
x; e&xis. This is reasonable, though, since when the noise is the same order of
magnitude as the control we wish to avoid "wandering" as demonstrated in Fig.
1-18,

H. The Stochastic Minimum Time Problem with Estimated State Varisbles.

l, State Estimation.

We now turn to the more realistic case of when the state vector is not
known exactly, but must be estimated, For the purposes of analyzing the sto-
chastic minimum time problem, we would be interested in having the state esti-
mates in the rotated coordinate frame of Fig. (1-4), We therefore formulate the
estimation problem using polar coordinates and note that for particular cases
the additional a(t) degrees of rotation could subsequently be made conforming
with the definitions given in Egs.(1-2) and (1-3), Section 2. Referring to
Fig. 1-19, the plant equations are given as follows:

. 2
u =

H|<1

- E? -a sinoa+ x_ cos o - x6 sin ¢
r

5
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uv .
- + a cos O + x6 cos O + X. sin O

5
T =u (1-56)
é = V/I‘
;’cs = - Byxg + g (t)
xg = = By + 5(t)

where x5 and Xo are the attitude and acceleration stochastic processes,
respectively, which are used in accordance with the previous discussion.
Furthermore, we presume that the following measurements are allowed on the
system: (R = Earth's orbital radius; o = Earth's orbital angular velocity):
(a) Renge: hy = p = [r% + R® - 2rR cos(s - wt)1/? 4 2, (+)

ru - Ru cos(® - wt) + rR(% - ) sin(6 - wt)

(b) Range Rate: h, = p = > + §u(t)

(¢) Yaw Angle: h3 x5 + §5(t)

(d) Low-Thrust Acceleration: hy = x,+ §6(t)

where §3, gu, §5, and §6 are the error processes associated with the
observation measurements, We now assume that the linearized plant and observa-
tions equations are sufficiently accurate for our purposes, and therefore the

Kalman(lz)

filter equations yield the minimum variance estimate of the state
of the system, The error covariance matrix, P, satisfies the following

Ricatti differential equation:

b - ap+ AT - PHK THP + GQGT (1-57)
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where
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where ciz is the covariance of the process gi(t). Hence, with the
specification of the initial error covariance matrix, we may calculate P(t)
before launch using Eq.(1-57).

2. Optimization of Measurements,

Before continuing with the analysis of the stochastic minimum time con-
troller, we turn to the very meaningful and interesting question of measure-
ment optimization. We have specified in the previous section that accelerometer
and angular measurements should be available. If they are not, then the state
deviation uncertainties grow to enormous values by the time a mission would be
complete. We therefore ask to which of the two measurements, accelerometer or
angular, we should devote the most money. Putting this another way, suppose
that we are given a fixed total cost for the sensors of the type mentioned,

Then the question is how should we allocate the funds to derive a maximum return
from the sensors? Of course, the definition of the return is somewhat arbitrary,

and therefore we consider two possibilities.

T
(a) j Pil + sz + kz(P§3+ Pﬁu) dt
© (1-58)

(b) Py, (T) + P (T) + k(P23(T) + B, (1))

These performance indices give an indication of how accurately the state of
the system is determined. We now assume that we pay a fixed price for each
order of magnitude of accuracy of the angular and acceleration measurements.
That is to say, if we are allocating a fixed amount of money, then

log o_ + log Og = constant (1-59)

5
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We note here that it would be a simple matter to consider other cost speci-
fications, but to demonstrate the technique, Eq.(1-59) is assumed. It is
quite reasonable to assume that 05 and 06 possess lower bounds which are
necessitated by the level of sensor technology. The numerical results for
this problem are shown in Fig, 1-20. The values of Egs.(1-58) are represented
using -12 for the constant in Eq.(1-59), and lO-lO as the lower bound on
the standard deviation of both sensors., The optimization is made over
approximately 50 days of the Mars mission considered in earlier experiments,
It is obvious from examining Fig., 1-20 that accurate acceleration measurements
are to be preferred over accurate angular measurements for the mission under
consideration, The diagonal elements of the covariance matrix, as well as the
nominal state vector, are shown in Fig. 1-21 - 1-2L where the optimum observa-
tions have been assumed. For comparative purposes, the same quantities are
plotted in Figs. 1-25 - 1-28 using non-optimum, but admissible, values of the
measurement accuracies.

We conclude that optimization of the state estimation yields definite gains
for the system that was considered, This result lends motivation for a similar
analysis of other space missions.

3. An Algorithm for Determining the Optimum Switching Strategy for the

Stochastic Minimum Time Controller with State Estimation.

We now are ready to determine in what way our switching strategy would
change relative to uncertainties in the state variables, We saw in the last
section that the "state" of the system is actually given by a Gaussian density
function with a time varying covariance matrix, In order to use the numerical
approach described in Section E, we must determine in what way the transition
probability density function needs to be modified in order to account for

imprecisely known state variables. This will be done in the following section,
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where it will be assumed that P(t) can be approximated by a step function

with a fixed interval size A, It is now apparent that the transition

probability density function will vary with time along the nominal trajectory.

For this reason, we need to augment the algorithm described in Section E.

The technique we employ here will be to first compute the switching strategy

at nominal encounter time using the method of Section E. We then step back-

wards in time, at intervals of A, and determine the switching strategy at
each interval by the following method:

(1) Compute V(T,C) by the method in Section E.

(2) Compute V(T-nA,C) = A + Min E [V(T-(n-1)8,X(T-(n-1)a)|X(T-na)], and
store u(T-nA,C), for n 2 1, 2, *** N where N is the smallest number
such that T - NA < O, In this formula, E indicates that the expectation
is to be calculated using the transition probability density function at
time T - nA,

We are now ready to solve for the modified transition probability density

function.

4, The Transition Probability Density Function with State Variable

Uncertainties.

The new transition probability density function can be obtained using the

following integral:
r

P(X(t)|P(X(0))) = ] P(transition to X(t)|X(0))P(X,)ax, (1-60)
Initial States X(0)

The first term in the integral is given by Eq.(l—55), and can be represented as

1 - (X~ (AX_+B) )t (x- (AX_+B))

P(O,Xo;t,X) = W e

where




The second term in the integrand is given by the Kalman estimate which can

be represented as

.1 ~(% ) TP (X 1)

e}

where p 1is the estimated state, and 2P is the error covariance matrix
which satisfies Eq.(1-57). We have noted that P is to be approximated by

a step function, Therefore we let P(T-nA) = C,- Eq.(1-60) now becomes

-(x-(AxO+B))TM'l(x-(AXO+B))

P(X(t) |P(X(0))) = f—\—w—

X(0)

L et

e ax (1-61)
le|Cnll;2 0

To carry out this integration we define
N -

Then Eq.(1-61) becomes

1 [ oA, -0)) M (AKX D)) - (X o) Te Tt (x 1)
P(X(t)|P(x(0))) = i ll/EIC Il/z . ix_

(1-62)
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Now let

E = Dep = A-]X - A-lB-u 3 X =X

and Eq.(1-62) becomes

~

r-x-E)aATAx-E) - x C;]'X .

l i
P(X(t) |P(x(0))) = ﬁ2|M|l/2|cn|l/2.fe ax
1 [ {-)ET(c;l+ATM‘lA)§ + 28T ax-rT (A DM 1A )E ax
" e, [2)° (1-63)

Letting
- - ~ *
(cnl + a0ty Y2 o x

equation (1-63) becomes

[ X X mToa Tt C;ll+ATM-lA )~/
Ve j e ax
(1-64)

T,,T =1
o B (A"M TA)E %

P(X(t)|P(x(0))) = 21 |l/2|c'l+ATM'lA|
n n

Completing the square and performing the integration yields

1

P(X(t)|P(X(0)) = 73 exp{-E" (ATM A )E+ETATM" A(C;1+ATM-1A)—1/ 2

7| MC ( C;ll+ATM-lA) |
(ATt (e tea T 1a) /29Ty o L

n xlMe_ (c;l+AfM'lA) RE

exp{-ET(ATM'lA+ATM‘ A(C;l+ATM-lA)-lATM-lA E}
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We now substitute for E +to obtain

1 T, -1T, T -1 1. -1 .-
P(X(t)|P(X(0)) = nIMCn(C;l+ATM-lA)\l/2 expl-(X-B-Au) A" T (A M a-a T da (k7L A Ty L
AR (K- (Beap) ) )
This simplifies to finally yield
p(X(t) |P(X(0))) = = exp{=(X~(au+B)) M (1-a ([ ha T Ta) T L)
| Me( C;l+ATM-lA) 1/2 |
(X-(Au+B))} (1-65)

It is interesting to note the differences between Eq.(1-65) and Eq.(1-55). In
Eq.(1-65) we note that the true state is now replaced by its estimate, u, and
also that the original covariance matrix inverse, M-l in Eq.(1-19) is degraded

2

in Eq.(1-65) by a factor
T -;A)-;ATM-l

I- A(C;1+A M

5. Numerical Results for the Case of Estimated State Variables.

Numerical experiments were performed in the unknown state case in exactly
the same way as previously described except that this time Eq.(1-65) was used
for the transition probability density function. Generally speaking, intro-
ducing uncertaintities in the state variables has the same general effect as
increasing the magnitude of the disturbances on the space vehicle. Three
numerical experiments were made using selected system parameters which are

indicated in Fig. 1-29.
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1.4, Summary and Future Work,

In this report we have emphasized the influence of noisy actuators on
a low-thrust guidance system. It has been shown that the somewhat "classical"
system determined via the second variation technique fails to yield adequate
terminal accuracy when subjected to the noise inputs which one could normally
expect. In fact, the noise level would most likely be comparable in magnitude
to the control forces, and for that reason "small noise" assumptions are
invalid,

The approach taken here has been to design a guidance system which not
only demands the desired terminal accuracy, but also minimizes the fuel re-
quired to perform that task. The analysis of this system when it is subjected
to stochastic inputs led to rather interesting results. It was shown that the
"separation" property of estimation and control -- which one obtains with the
usual case of linear dynamics, Gaussian noise, and least squares performance
index -- is not obtained using a nonlinear controller of the type considered.
In other words, one cannot merely substitute the estimated state variables for
their actual values in a deterministic controller, In fact, for the important
aspect of this problem where the noise becomes comparable in magnitude to the
control, it was found that a switching strategy far different from the determin-
istic solution must be used. To use the deterministic strategy in such cases
might bring a disasterous ending to the space mission.

In Appendix A, a particular example of the inadequacy of the "optimum",
or neighboring-optimal guidance system is demonstrated. In future reports, it
is planned to carry out a similar analysis of other missions of current interest

to JPL.
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APPENDIX A

ANALYSTS OF THE NEIGHBORING~-OPTIMAL GUIDANCE SYSTEM ACCURACY
FOR A CONSTANT THRUST, MINIMUM-TIME MARS RENDEZVOUS MISSION

In the following, the complete numerical analysis of the accuracy of
a guidance system obtained by means of the second-variation optimization
technique is described. The first step is to obtain the nominal, or open
loop trajectory, and for that purpose a constant acceleration level of
.78 x l()‘-3 m./sec2 is assumed which corresponds to a 3 oz. thrust applied to
a 2500 1b. space vehicle. Since the minimum time Mars rendezvous is a free
terminal time problem, we use the analytical artifice of normalized time to
convert the free terminal time problem into the more usual fixed time problem,

This is done by defining
t =TT T ¢[0,1] (A-1)
where t 1is the true time and 7 1is the normalized time, Here T represents

the unknown terminal time which is treated as a state variable by adjoining

its dynamical equation

e
Ii
(@)

It is easily seen that

dx dx
ToITE

and thus we can consider the following equivalent dynamical system (note:

dotted variables represent derivatives with respect to T)
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1

. uv
v C-;r-+ a cos 9>T

1"=uT
§ - YT
T r
T=0

If at this point we form the Hamiltonian of the optimization problem and carry
out its minimization with respect to «a according to Pontryagin's maximum
principle, we can obtain the canonic differential equations for the system

state variables and Lagrange multipliers:

uv a \
V={-—- ',_,_,-2 }T
/.2 2
r IS+,
f =uT
. vT
0 = - (A-2)
T =0
A EEXE - LT
1" r 3
i 2TV ATu AT
A = = + -
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2
i3 ) klv T _ ZuxlT i szuT . xﬂvT
r2 r3 r2 r2
A, =0
2
. v 93 axl uv axz )
)\="'l‘)\.“‘—"—--r-!'.-.—_-._?,9—-}\ - e— - i
5 11 / > = |
\r e Y 2, A 2 T N2 A e /
vV M 2 1 2
)\.uv
= Al =

The given boundary conditions, and the transversality conditions associated with
the optimization problem yield the boundary values necessary for the solution

of Eq.(A-2):

u(0) = 0

u(l) = 0

v(0) = VeaRTH

v(1) = Viapg | (4-3)
r(0) = rEARTH

r(1) = ryeq

®(0) = Spapmy

o(1) = eMARS(T)

xs(o) =0

x5(l)

1
1
>
=
—~~
'_l
S~
E(]D
(]
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Using the quasilinearization method, a solution of Eq.(A-2) was determined
which satisfies the required boundary conditions.

At this point we are ready to consider the second variation, or
neighboring optimal guidance system. Although more elegant derivations have
- been given, the method is quite equivalent to linearizing Egs.(A-2), and
using these to approximate the behavior of the system. Therefore suppose
that at time T we have known state variable deviations equal to
col[su(T), &v(r), ér(7), 86(7)], and we wish to determine the manner in which
these errors are nulled in the optimum system. From the theory of linear

differential equations, we must have

! su(T) | o

o 8v(T) ; o

Cam o

so(r) Sags OT(L)

6T(T) | 8T(1)

3(1,1) = @ (A-k)

Fon (1) &1, (1)

e 8h,(1)

' 8h5(r) 81, (1)

Oy () e (1)

where & is the (10 x 10) fundamental matrix of the linearized equations,

and satisfies

& = A(T) & 8(0) = I

Here A 1is the Jacobian matrix of Egs.(A-2) evaluated along the nominal

state and Lagrange multiplier vectors. Since Egs.(A-4) are 10 linear
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equations in 10 unknowns, we may determine

the following form

§T(T)

81y (T) “eu
B, = B e
%&3(7) or
L ahy,(T) | L8

where B(T) is a 5 x 4 matrix (note that

the unknown initial values in

5x5(T) = 0). Hence we may write

[éué %uT
d } ]
e 1 - - '
D&V i bV
o= [ Pen e P eem .
cer L - e
b8 | |

(A-5)

where é(l) is defined to be the first four terms of the first four rows of

the fundamental matrix, and é(z) represents the fifth through the ninth

terms of the first four rows of the fundamental matrix.

Eq.(A-5) therefore rep-

resents the differential equation satisfied by the state variable deviations.

In order to complete the analysis, we must now adjoin to the system the

noise terms representing the attitude and thrust vector variations.

a result completely analogous to Eq.(1-56):

where X 2 coll su, &v, &r, 89, Xs) x6] and

One obtains

(A-6)
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et

cos & -sin o
sin o cos O
®l+f§2B 0 0
C= 0 0
0 0 -Bl 0
.9 0 B,
L., J—
"0 0
"0 0!
‘0 0!
G='O o
1 (O
0 l_J

and §, and §2 are independent, zero mean, Gaussian, white noises with

variances o 2 and o 2. The state deviation at time T is therefore

1 2
given by
T g (%)
i @(T,t) G 3 A dt (A-?)
o f_gZ(t)_?

A

where ¢ 1is the fundamental matrix of Eq.(A-6). The covariance of the

deviations is then given by

f, al) T EACHEENL 3
E|l | &(r,t) a(t,): at. e (1) G(t,) L dt,
B ERANE 1/ TR 12 2 42
\\ ° l_gz(tz)j L0 ng(tZ)J
_ - ) -
= & (7,t)K QT(T,’G) at (A-8)

0




where K

Using Eq.(A-8), we can numerically evaluate the covariance of the state
deviations. TFor the case when o, = o, = a/600, and By =B, = 1/100 hrs.,
we find that the standard deviations of the state variables after 90% of the
mission has been completed are about 100 million kilometers in position, and
30 kilometers/sec, in velocity. These errors are far greater than predicted
in Section 3-D probably because thrust level control is not permitted in this
system. It is the tendency of linear-regular controllers to make strong
corrections near the terminal mission time -~ this amounts to approximately
the final 10% of the mission in this example, However, in order to fully
correct the enormous deviations cited above, the control demanded would
definitely not be available, and the errors could not be significantly reduced.
A run was also made using B.‘L = f32 = 0, and the resulting state deviations were
compprable to those cited above. Finally, the case when Xg and Xo are
white noises (with the same variances as given above) was investigated, and the

resulting errors were approximately one half as great as with the correlated

noise,
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VEHICLE LOCATION AT TIME ¢
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7 ]

oy 90 deg
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ORIGIN FIXED AT POINT IN
— SPACE WHERE ION ENGINE IS
TURNED ON (NOMINAL VALUE)

0

Fig.l-1. Definition of the coordinate frames (xi,x?')) and (xl,x3).
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8 REQUIRED)

VAPORIZER
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‘ Fig.l-2. A low-thrust ion-engine,
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Fig.1l-5, A low-thrust trajectory
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for a Jupiter mission,.
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Fig.1-6. Definition of the "switching boundary" in the (yl,yz) plane.
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sin 3 (¢)

cos B (7)

-\ (0) 7 + X3 (0)

—l
!/
/4— ~X3(0) 7 + A g (0)

SUM

/— (-X3(0) 7 + X4 (0)) cos B ()

/7N SUM

/ \
‘/

\
g ~r-\
/[
(=X) (0) 7+ X, (0)) (-sin B (1)

Fig.l-7. Control function switchings for the second solution.
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Fig.1-17. A typical sample function for the Ornstein-Uhlenbeck Stochastic
process (1/B = 20 minutes, u = .25 x 107" m./sec.?, o = .2u =
.05 x 107" m. /sec.’)
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Fig.1-18. Demonstration of "wandering” that may occur in presence of large
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ORBITAL PATH OF EARTH

ORBITAL PATH OF TARGET:

Fig.1l-19. Definition of the polar coordinate frame.
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OPTIMALLY CONTROLIED SOFT IANDING IN IMPERFECTLY
KNOWN PLANETARY ATMOSPHERE

- A Preliminary Study for Adaptive Soft Landing -

2.1, Introduction,

By optimally controlled soft landing we mean a controlled landing with
minimum fuel consumption, and, prescribed terminal conditions on the
vehicle's trajectory which must be satisfied.

The space vehicle is supposed to be a known dynamic system in that sense
that the functional form of the dynamic equations governing the vehicle's
behaviour are known. The gas~dynamic forces, however, which act on the vehicle
descending through a planetary atmosphere are known with very limited accuracy
due to our very imperfect and, for the moment, hardly improvable knowledge on
planetary atmospheric data. (The basic data are: atmospheric mass density,
atmospheric pressure and the velocity of sound; all these data are functions of
the height above the planet's surface.) For that very reason we have to assume
that at least some of the basic parameters of the dynamic equations governing
the vehicle's behaviour during the phase of atmospheric flight are very imper-
fectly known., We have to assume, furthermore, that there would be unknown
(external) disturbances acting on the descending vehicle, and, that the given
measurements on the state of the vehicle would be corrupted with significant
noise. Needless to emphasize that the very limitations of our knowledge on the
relevant planetary atmospheric data have a considerable effect on trajectory
and performance calculations for the atmospheric entry and landing phase of a

planetary mission,
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In our study we separate the motion of the center of gravity from the
motion of the vehicle about its center of gravity and will consider only
the motion of the vehicle's center of gravity. This Separation is justified
in the case of undertaking trajectory and performance analysis only. (In
the case of undertaking stability and attitude control analysis one mainly
considers the motion about the vehicle's center of gravity.) We will consider,
furthermore, that the vehicle's trajectory lies in one plane, defined by the
radius vector from the planet's center to the landing point and by the
initial (entry) azimuth direction.

In the present study the given problems are considered from the point of
view of Modern Control Theory, and, in two, seemingly distinct parts. After
outlining the relevant dynamic equations of atmospheric entry (Section 2.2)
we deal (1) with Optimal Thrust Programs by using Pontryagin's Maximum Principle
and assuming known parameters in the state equations (Sections 2.3=k4), and,

(2) with Non-linear Sequential State and Parameter Estimation based on Dynamic
Programming (Sections 2.,5-10). New results are Presented in form of Asymptotic
Non-linear Filter (Section 2.11), 1In the Summary Section of this Chapter the
connection between Optimal Thrusﬁ Programs and Sequential Estimation is briefly
explained and the future work is indicated.

The necessary data we have applied in the presented nﬁmerical calculations
are only order-of-magnitude data for some typical Planetary mission. (But some
of the applied data are quite close to a Mars Mission.) In this study we
have mainly intended to present and elaborate modern viewpoints and techniques
which are relevant to handle the complex problem of optimally controlled soft

landing in imperfectly known planetary atmosphere.



Ta

2.2, Dynamics of Atmospheric Entry,

During atmospheric entry the motion of the space vehicle is governed by
its own inertia, by the gravitational force and by gas—dynamic forces. The
gravitational force acts toward the planet's center. The gas—dynamic drag
force acts antiparallel to the vehicle's motion. The gas—-dynamic 1lift force
(and centrifugal force) act normal to the vehicle's motion.

In deriving the equations of motion of the space vehicle we only consider
(a) the motion of the center of gravity of the vehicle, and (b) two-degrees-of-
freedom (planar) motions of the center of gravity of the vehicle., As a conveni-
ent reference system we will use a trajectory-fixed coordinate system with its
origin located at the center of gravity of the space vehicle, and, with unit
vectors e and e, parallel and perpendicular to the vehicle's motion. The
path angle will be defined as the angle between the velocity vector and the
local (instantaneous) horizontal. (See Fig. 2.2.1.) We assume, furthermore,

a non-rotating, spherical planet with quiet (non-moving) atmosphere., The forces
acting on the space vehicle are shown in Fig. 2.2.2. We assume that the rocket
thrust is designed so that it always acts in the tangential direction.

According to Newton's second law the momentum balances in the tangential
(ED) and normal (EL) direction of the motion give the following differential

equations:

dv T

m -d—t=m—gsinot-D-T (2.2.1)
r
2
mv%%:m F—Z-Z—\'cosa-L (2.2.2)
S
where m = mass of the vehicle;
v = velocity of the vehicle;
—% = g, acceleration of gravity (T = GM, with M: mass of the planet
r

and G: gravitational constan
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v

Fig. 2.2.2




Th

D,L = gas-dynamic drag and 1ift forces, respectively;
T = rocket thrust force, designed to be acting always in the
tangential direction of the vehicle's motion;
r,& = defined on Fig. 2.2.1.

The term (vz/r) cos @ 1in Eq.(2.2.2) is a fictitious centrifugal force which
compensates for the curvature of the spherical planet.

The altitude "h" of the vehicle above the planet's surface and the ground
range "s" of the vehicle, measured from the entry reference vertical, are

given by

dh .

F--Vvsina (2.2.3)
ds R

E'E =;V cos O (2'2')4')

where R 1is defined on Fig. 2.2.1,
The gas—dynamic forces, D and I, are dependent on the dynamic pressure

(pVZ)/Z, where p = atmospheric density and v = the vehicle's velocity. We

have
L J
D = CDA% ove (2.2.5)
L =CpA %- v (2.2.6)
where CD,CL = dimensionless gas—dynamic coefficients in the tangential and

normal direction of the motion, characterizing the geometry of
a given body, and, are functions of the Mach-number as well as
of the angle of attack, (The Mach number is a function of the

local speed of sound.)
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A = relevant reference area of the moving body.

For the atmosphere's density variation with the altitude "h" we will

assume the exponential distribution:

p = py exp(- bh) (2.2.7)

which is derived for an isothermal atmosphere in hydrostatic equilibrium.

In Eq.(2.2.7):

Po density of the atmosphere on thg planets surface,

o’
I

inverse scale factor. (Atmospheric constant, is dependent on
the planet's gravitational attraction and on the temperature and
composition of the planetary atmosphere.)

The rocket thrust force, T, in Eq.(2.2.1) is given by

dm
T=3 (ve-v), 0<T<T _ (2.2.8)

where v, = velocity of the exhaust gas relative to the wvehicle
T = maximum value of T.
max

In our calculations we will make the following assumptions:

(a) EE = g = constant
r

(b) R>>h, hence r =R = constant

~ d
(c) |ve| >> |v|, hence T a% A



76

(a)

= 0, which implies a pure gravity-turn ballistic descent,

=1 1oy

- 11
since T||v.

By introducing the following notations

1
Kt & 5 CDApO 3 B =T (control force) (2.2.9)

and substituting Egs.(2.2.5-9) into Egs.(2.2,1-l4) and remembering the assumptions

specified above, we obtain the following equations:

h=-vsina (2.2.10)

v cos O (2.2.11)

7]
il

v=gsinag- % K' exp(~ bh) ve - % B (2.2.12)
y=18_-Y
o' _(v R )cos o (2.2.13)

which are four, coupled, ordinary non-linear differential equations describing
the planar, descending motion of a pure gravity-turn ballistic vehicle in a
planetary atmosphere,

In the case of a-solely vertical descent (o 4 900, &4 0) Egs.(2.2.10-13)

are simplified to

h=-v (2.2.14)

Bl
™

v=g- i K' exp(- bh) ve - (2.2.15)
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2.3. Optimal Thrust Program for Vertical Atmospheric Descent and Soft Landing.

In this Section the term "optimality" will be used in the sense of Modern
Control Theory. Hence Optimal Thrust Program is called an admissible thrust
program (= admissible control) which transfers the space vehicle from a given

initial state to the prescribed terminal state and minimizes the "cost function".

As a natural "cost function" we consider the consumed fuel:

F = -fxﬁ at (2.3.1)
0
where T = terminal time (free)
m = mass flow rate (decreasing)

The corresponding motion of the vehicle is called an Optimal Trajectory. The
Thrust Program (or, equivalently, the Control) is called admissible if it
satisfies the imposed constraints in the period of control.

In view of Egs.(2.2.8-9) and of Assumption (c) there, the Control B (the

rocket thrust) is given by

B=mv_ , 0<B < Bmax (2.3.2)

(The control force B could also be written in terms of the specific impujse
ISp of the rocket engine, since v, = Ispg, and therefore B = Ispgm.)

In this Section we will consider one-level, on-off, non-stop thrust motors
constituting the control force B. (By "non-stop" we mean motors which can stop
Just by burning out if once they are on.) Hence we have the following imposed
constraint on the control:

0]
B = (2'303)

Bm in a finite time period T,
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As prescribed terminal conditions we consider

h(t) =0
v(1) = 0 (2.3.4)
n(T) = m,
where h = height above the planet's surface
v = velocity
m, = final mass which has to be delivered to the planet's surface.

Taking Eqs.(2.3.1-4) into consideration one can see that the Optimal
(= Minimal) Thrust Program is equivalent to the minimal time problem, (In
fact the "cost function" F is a monotone increasing function of the terminal
time T.) Thus Optimal Thrust Program can be assured by quoting existence
theorems for time-optimal controls,[Ref.1l]

By introducing

&h (vertical position above the planet's surface)

™
1]

&y (velocity)

»
]

and augmenting the state space by defining
x, &n (mass of the vehicle)

3

then, from Egs.(2.2.14-15) and (2.3.2), we obtain the following system equations:

xl = - X2 (203-5)
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=g - %3— K' exp(- bxl) xg - %—- B (2.3.6)
3

%3 = - g;. (2.3.7)

e

with prescribed terminal conditions

xl('r) = xz('r) =0 , x3(1') = m, (2.3.8)

)
3=_J%dt (2.3.9)
0

In order to obtain the form of the Optimal Thrust Program we apply the

Pontryagin Maximum Principle,[1l] The Hamiltonian "H" for the minimal time

problem becomes:

1 2 1
H=- )‘lXZ + )\Z[g - % K'exp(- bxl) X, - % Bl - )\3 %; (2.3.10)

where the auxiliary variables Ms Aps Ay are nontrivial solutions of the

AR
system of adjoint equations:
. oH K! 2
M= = bxzexp(- bxl) (2.3.11)
1 3
. M K
A, = - &—2 = N+ 2hx, % exp(- bxl) (2.3.12)
S : S —)\-?— K'exp(~ bx )x2 + (2.3.13)
M- =3 P 1% + P e

3 X3
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A

A
Since el = 0 gives £ + 3 = 0, we see that the Hamiltonian is
B x3 ve
‘ maximized by taking
.k
2
Bma.x’ whenever =+ 7 >0
3 e
B = (2.3.14)
A
O , whenever =24 23 <0
X v
3 e
In the case of
A A
2 3
—+= =0 (2.3.15)
3 e
‘ B is indeterminate. Equation (2.3.15) expresses the singularity condition.

It can be shown, however, (also by using physical reasoning) that there is no
singular control for that problem we consider here since relation (2.3.15)
cannot hold on any finite closed intervalin [O,T].

Relation (2.3.14) expresses the fact that the Optimal Thrust Program is
of the Bang-Bang Type. This means that the Optimal Thrust Program will consist
of either full thrust from the time considered (= initiation of the terminal
phase of the soft landing mission) until touchdown, or a period of zero thrust
(= free fall) followed by full thrust until touchdown.

In order to synthesize the Optimal Thrust Program we have to determine an

appropriate switching function. The development of the switching function con-

sists in determining a relation F(Xl’xz’x3) = 0. If the given maximum thrust
is applied continuously from the moment when this relation is first satisfied,

‘ a soft landing can be achieved.
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A theoretically possible way for obtaining the switching function would
be to integrate the equations of motion, Egs.(2.3.5-7) under the assumption
B = Bm in the time interval [O,t'], and determining the relation which must
exist between the initial values of the state variables [x,(0) = X5 xz(o) =V
x3(0) = mo] in order to achieve a soft landing in a time t', Then, by
eliminating the free time parameter t', we could obtain an expression
F(xo,vo,mo) = 0 in closed Form for the switching function.

Unfortunately, it is impossible to carry out the integration of Egs.(2.3.5-7)
analytically. (Would it be possible, we were still faced with the problem of
eliminating t'.)"

The only way of developing the switching function is to integrate Eqs.
(2.3.5=7) numerically in backward time. Or equivalently: integrate Egs.(2.3.5-7)
as they are from t =0 to t =17 (just change the sign of i3) and use the
prescribed terminal conditions as initial conditions. Then we obtain the
switching function F(xo,vo,mo) = 0 as tabulated numbers for time "t" as
parameter. (0 <t < T = chosen maximum time.)

In the present stage of investigation we were mainly interested in the over-
all gas-dynamic braking effect of a planetary atmosphere as far as the development

of the switching functions is concerned. We made two types of calculations:

*  The equations of motion can be integrated analytically in the case of no gas
dynamic drag, or, in the case of homogeneous atmosphere with gas dynamic
drag linearly dependent on velocity. But eliminating t' would still require
solution of transcendental algebraic equations in these cases, too.
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(1) With gas—dynamic drag: (a) XK' = 3.1073 (kg/m)
S |
(m ™)
(b) K' = 6.1073 (kg/m)
Lo -1
(m ™)

(2) Without gas-dynamic drag: (See Egs.(2.3.5-7), but without the

b 1.5 10

1

b 1.5 10~

velocity-dependent term in the second equation,)

For the other constants we used the following values:

m, = 120 (kg)
v, = 1800 (m/sec)
g = 3 (m/sec?)
Im| = 1 (kg/sec), constant, since we assume
m(t) = m, - at (2.3.16)

The integrations were carried out on the IBM 7094 computer using Runge-
Kutta-Gill method together with the Adams-Moulton predictor-corrector formulas
in the variable mode version (= automatic control of error) of the CIT subroutine
called DEQ. The equations were integrated in a time interval 0 < t < 120 (sec.)
We used At = 0.1 sec for the integration step and E = l.lO-6 for the maximum
allowable truncation error. Some representative results are tabulated below
and are depicted in Fig, 2.3.1.

NB: the tabulated and depicted switching function is, at the same time,

the actual optimal trajectory with time or mass as parameter; starting with a

given set of values of h:z /IO (or t.) and reversing the time we obtain

the actual optimal trajectory for the chosen initial values and ending at

§l=X2=O and x3=mf.




83

L*1gg 0°0H®8T9 " 6°€l6 0° 2H069 0°'626 0°0.269 ohe ozt
0°T6L 0°0£0%Hh 2 Llg 0° 80506 1" 2£Q 0° €9y 022 00T
¢*6.9 0° L620¢€ 8 tol 0° LGoxE £ ozl 0°LLlozE 002 08
8645 0°'TL6LT 6°829 0°69002 2" 186 0°0968T 08T 09
gQ°L6E 0° 2648 G TS 0°0gT6 0° €24 0°1hlg 09T O
¢ lre 0°9H22 7°0€2 0°LT€2 L €22 0° 1822 oHT 02
T HIT 0°08s T°9TT 0°68s T°6TT 0" €84 OtT 0T
6°g¢ 0° 4T oheld 0°'gHT 9°g84 0° YT 2T g
0 0 0 0 0 0 02T 0
(o9s/m) (w) (99s/m) (w) (095 /u) () (%) (o9s)
0, _ 2y Oy = Ty 0, - 24 Oy = Ty 0, _ 2y Oq = Ty Oy = 9
SUOTATPUOD A.n..sv :uo.m ¢°'tT= a A._”..Sv ::o._” S'T= a
otasydsoune 3NOYITM (w/35%) 0T"9 = . (w/3) - OT'€ = .

SUOTATPUCD OTJISYASOWL® USATYH)

DNTANYI-IJ0S TVOLIMEA ¥Od (SHTMOLOHCLYHL TYWIIJO =) SNOILONNA ONTHOIIMS




8l

|'¢°2 "Bid

[wy]y o8 oL 09 0S ob og 02 ol

[ _ T _ _ I [ _
Jes g
LY-1S o_..h
00s omk\.
p-0l G'I c-0I'9 | ® ;
p-Ol G'I c-ore | @ 205 Ob ”1
0 0 @ \

(1-w)aq (w/b¥) ¥ . -

29S 09

SNOILIGNOO OI¥3HdSONWLY \

1N30S30 TVOILH3A
S3AYND ONIHOLIMS

00l

002
00¢
oov
00¢

009
004
008
006

000l

A [o8s/uw]



85

2.4. Optimal Thrust Program for Ballistic Descent.

Regarding Optimel Thrust Program for ballistic descent we follow the
same considerations and assumptions on "cost function" and control constraint
as we did for vertical descent in the previous Section. (See Egs, (2.3.1-3))

As prescribed terminal conditions we consider now:

h(T) = 3000 (m)

s(1) = 0

a(T) = 84° (2.k4.1)
v(T) = 20 (m/sec)

m(T)

mf = 120 (kg)

These terminal conditions mean that the rocket thrust stops at 3000 (m) above
the planet's surface. (The ground range "s" is measured fram that point.)
In that moment the vehicle's path angle has to be 81° below the local horizontal,
and, the vehicle's velocity and mass must be 20 (m/sec) and 120 (kg), respect-
ively. From that moment on the vehicle continues a parachute mode descent to
the planet's surface.

Taking Egs.(2.3.1-3, 2.4.1) into consideration one can see that the Optimal
(= Minimal) Thrust Program for ballistic descent is equivalent to the minimal
time problem, as it was for vertical descent.

By introducing

el
[

E (altitude above the planet's surface)

el
]

B g (ground range)
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e

3 =0 (path angle, measured below the local horizontal)

x) =V (velocity)

and augmenting the state space by defining

X &n (mass of the vehicle)

then from Egs.(2.2.10-13) and (2.3.2) we obtain the following system equations:

Xy = =X, sin x3

X, = X) COS Xg

N

X, =| =— = = | COS X

3 \\ , R ;/' 3

X g sin x_ - = K' exp(- bx,) x, - . B
- 3 1/ 4 Xg

. B

X, = = =

5 v,

with prescribed terminal conditions:

x,(7) = 3000 (m); x,(7) =0

]

x (1) = 84% x,(7) = 20 (w/sec), x5(T) = 120 (kg)

and, the "cost function" is given by

(2.4.2)

(2.4.3)

(2.4.14)

(2.4.5)

(2.4.6)
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.
= - | x_dt
& jxs
0

In order to obtain the form of the Optimal Thrust Program we again apply
the Pontryagin Maximum Principle [Ref. 1]. The Hamiltonian "H" for the

minimal time problem becomes:

g x, r 1
H=~ )s,lxhsin x3 + )\zxucos x3 + )\3 ;L: - T/f cos x3 + )‘h g sin x3 - -fg K'
\ -
10
+ exp(- bxl) xi -—B8 - )\5 %— (2.4.7)
5 . e

where the auxiliary variables Ms *** , Ay &re nontrivial solutions of the

5

system of adjoint equations:

. dH K' 2
)\l = - -a}—{z = - )\,4 ;5- b exp(- bxl) Xu (2.’4.8)
- : S
)\2 = - .ax_ = O (2.’-‘-.9)
2
g  x,)
. H . Lo
)\_3 = - &-—3— = )\lX)_I.COS X3 + )\quSln X3 + )\3<q - R_',l sin X3 -
N, & cos X3 (2.4.10)
- : SN 1.8
)‘h = axh = )\lsm x3 )\Zcos x3 + )\3 cos x3i R + 5 +
\ XL} i
N, %— K' exp(- bxl) x), (2.4.11)
5
. 3H Mo 2
)\5 =-s—=-—=K exp(- bxl) X, + B (2.4.12)
5 X
5
3H Mg
Since == =0 gives -—+ == = 0, we see that the Hamiltonian is
B x5 ve

maximized by taking




88

;B ___, whenever — + =~ >0
t Tmax X v
5 e
8 = < (2.4.13)
A A
O , whenever -)i+ 2 <0
X v
5 e
In the case of
)\u A
2
=ty =0 (2.4 ,14)
5 e

B 1is indeterminate., Equation (2.4.14) expresses the singularity condition.
But for this problem there is no singular control since relation (2.4.1k4)
cannot hold on any finite closed intewall in [0,T]. (This fact is clear for
physical reasons, too.)

Relation (2.4.13) expresses the fact that the Optimal Thrust Program for
the considered problem is of the Bang-Bang type.

In order to synthesize the Optimal Thrust Program we have to determine an
appropriate switching function. The evaluation of the switching function consists
in determining a relation F(xl,xz,x3,xu,x5) = 0. If the given maximum thrust
is applied continuously from the moment when this relation is first satisfied,
the prescribed terminal conditions can be achieved.

The only way of evaluating the switching function in this case is to
integrate Eqs.(2.h.2-6) numerically in backward time. Or equivalently: inte-
grate Eqs.(2.4.2-6) as they are from t =0 to t =T (just change the sign of
is) and use the prescribed terminal conditions as initial conditions (just
change the sign of Xu(T) in using it as an initial condition.) Then we obtain
the switching function F(ho,so,ao,vo,mo) = 0 as tabulated numbers for time "t"
as parameter. (0 <t < T = chosen maximum time.)

In order to investigate the gas-dynamic slowing-down effect of a planetary
atmosphere as far as the evaluation of the switching function is concerned we

made the following calculations:
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(1) With gas—dynamic drag: (a) X' =3.107> (kg/m)

. b =15 107 @b
(b) K' = 6,107 (kg/m)

b = 1.5 107 (@)

(2) Without atmosphere. (See Egs.(2.4.2-6), but using Eq.(2.4.5) without

the velocity dependent term.)

We have applied the following values for the other constants:

m, = 120 (kg)
v_ = 1800 (m/sec)
= 3 (m/sec?)

g
R = 3.106 (m)

‘ m| = 1 (kg/sec), constant, since we assume
n(t) = m, - at (2.4.15)

The integrations were carried out on the IBM 7094 computer using the
variable mode version of the CIT subroutine called DEQ. The equations were
integrated in 0 <t < 120 (sec) by At = 0.1 step. E = l.lO-6 was used for
the maximum allowable truncation error. Some representative results are tabu-
lated below and are depicted on Fig. 2.k4.1.

NB: The tabulated and depicted switching function are, at the same time,

the actual optimal surfaces; starting with a given set of values of h s

o’ o’

0 Vo mo (or to) and reversing the time we obtain the actual optimal

surface for the chosen initial values and ending at h(t), s(7), a(T), v(7),

‘ m(t).

a




90

1°9.6 W0E,TL 0°2Q06T- 0° 66869 L* L6 oIl 0°60.8T~ 0°8EH.L9 o2 0cT
8°9.8 .omomw 0°EeeeT- 0°17622% 6°L4g 10T 2L 0°T20€T- (o)l (e1%0]4 022 00T
0°29. 1Ot €L 0°2hség- 0°2669¢ € ech 102,€L 0°0TEQ- 0°T926E 002 08
0°929 10G 1L 0° GGy~ 0°€6TEZ 2666 1Ot il 0°QTI9H~ 0°8TH22 08T 09
9°96H 162,91 0°2gtoz- 0°2092T L°LEY 102,9L 0’ €66T- 0" €€€eT 09T o
9°'gHe 106,81 0°ogt- 0°2.9¢ € the 10€,8L 0" Gl 0°THoG OHT 02
G oLT +0T,08 0°02T- 0°gLLE " GET 10T,08 0°6TT- 0°GLLE OfT 0T
0'6. 106,T8 0°Eg- 0°9t2¢€ 8°glL 106,T8 0°¢e- 0°GHaE GeT q
0702 o8 0 0°000€ 0°02 o8 0 0°000€ 02T 0
(oas/m)  (9op) (@) (@) (o5s/w) (Fop) (@) () (&) (555

Obu.:um UHMN OwHNN OSHHN O>H.:N UHMN Omumun Oﬂu._..un OSHmum 3
(;-m) 70T ¢'T=a ‘“(w/3%) - 0T'9 = ¥ (W) 0T ST=4a “(w/3%) 0T € = X

(SUOT3TPUO) OTISYASOWGY USATDH)

"ONIANVI-IJ0S OIISITIVE ¥OJ (SHTHOIOILVIL TVWIIIO =) SNOTIONNA ONTHOIIMS




9l

6°026 166,01 0°26€8T- 0°92T49 o2 02T
9°02g 1S TL 0°gzleT-  0'629gh 022 00T
2°90L ofl 0°€608-  0°SGoHE 002 08
T HlG 10E KL O°* T6Hh= 0" GEl1zZ 0QT 09
2 oz 10T, 9. 0°Lh6T-  0°TQOZT 09T ot
£°gte 106,82 0°0Lt- 0'TT9¢ OHT 02
1 HET 0T, 08 0°6TT- 0°2LLE O¢T oT
9°8L 10E T8 0°te- 0°6Hat 62T S
0°02 o' 0 0°000€ 02T 0
(oos/m) (3ep) (m) (w) (33) (o@s)
0, = iy Op = €5 Oy . 2y O = T Oy = & 0

(SUOT4TPUO) OTISUdSOWIY FNOYRTM)

ONTANVI-ILJ0S DILSITIVE ¥0d (SHETHOIOHELYMI TYWILIJO =) SNOILONNI ONTHOIIMS




92

["p 2 'Bid

[wy]y o8 oL 09 0S ob o¢ 02 ol

| | | 1 | | | | 20S 0 -.

fo X~ 1 .
m\ — ool

208 Q] -

. . 08s 02
p-Ol €'l =019 | ® { — 002
»—Ol G'I -ol'e | @ 4
- - o 205 Ob - oo¢
(j-w)q (w/By) M k — oov
SNOILIGNOD 21¥3HdSOWLY 29s 09 .
\ » —{ 00¢
09S 08 > — 009
. — ooz
08s 00|
. \ — oo8
@/oom 02l
m%// \\ - o006
A — 000l
(A131VHVYd3IS Q3LvINgvL 38V JONVY ANNOYO ANV A [oas/ui]

319NV H1lvd 40 S3NTVA 9NI9NO138)

LN32S3a 2JlLSInve

SIAHND INIHOLIMS



93

The purpose of a fuel optimization study (such as those which are
presented in this and in the previous sections) is to develop a system which
accomplishes the terminal phase of the mission with an efficient utilization
of fuel. Computation of the minimum fuel'required for a given mission may be
used as a guide in specifying fuel requirements.

It is obvious, however, that arriving the prescribed terminal manifold
along the optimal trajectory (= switching curve) presupposes a precisely

precalculated switching curve, and, a precise knowledge of the current state

of the space vehicle. (The Pontryagin Maximum Principle determines an open-
loop control.) Disregarding the limitations of the measuring instruments, the
required precision is very much affected by the applied atmospheric parameter
values. The switching curves and surfaces in Figs. 2.3.1 and 2.4.1, calculated
for different K' values, illustrate how sensitive these trajectories are to
uncertainties in the value of the parameter K' in the dynamic equations. The
applied values of K, 3.10-3 <K' < 6.10-3 (kg/m), may be regarded as the
uncertainty we have in the value of ground level pressure on Mars, which, by

present knowledge is =~ 10 < Py <20 (mb).
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2.2. General Feature of a Proposed Scheme for Sequential Estimation of

State and Parameters in Noisy Non-linear Systems.,

An optimally controlled soft-landing maneuver in an imperfectly known
atmosphere presupposes an "optimal knowledge" of the current state of the
system. Generally we have to assume that
(a) there are unknown dynamic disturbances acting on the system (this is

due either to the approximate character of the differential equations

describing the actual behaviour of the system, or, to randomly acting

external forces);

(b) the dynamic parameters of the system are imperfectly known;

(c) 1in some cases not all state variables are available for measurement;

(@) the observable state variables are corrupted by measurement noise;

(e) we have no information on the statistics of the acting dynamic and
measurement noises,

Taking into account all these realistic assumptions we have to ask three
basic questions:

(a) how to obtain "optimal knowledge" (or "true estimate") on the current state
of the system;

(b) how a given scheme for sequential estimation does converge to the true
state of the system, or, using practical terms: how much time is necessary
to obtaining "true estimate" on the current state of the system.

(c) what are the practical implications of the given sequential estimation
scheme as far as its implementation is concerned, or, in other words:
whether it is possible to make reasonable simplifications on a (presumably)
complicated scheme.

Since soft-landing under atmospheric influence is described by (ordinary)
non-linear differential equations we are faced with the problem of non-linear

filtering (or sequential estimation). Earlier investigators in the theory of
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optimal filtering have mostly dealt with linear systems and have assumed

some (or complete) knowledge on the statistics of the relevant disturbances.
Therefore their theories are inappropriate to handle the questions we are
posing in connection with "optimally controlled soft-landing in an imperfectly
known atmosphere",

Considerable results in the theory of sequential state estimation in
noisy non-linear systems have been obtained only recentlygz)(3) In the present
report we essentially follow the general framework of Ref. 3 which seems to be
adequate for handling our problem specified above.

In Ref. 3 a least-squares criterion is used for estimation purposes and
the sequential nature of the estimation problem is brought out by applying the
theory of invariant imbedding on the Euler-Lagrange equations which were for-
mally obtained by using Pontryagin's maximum principle. The derived sequential
estimator equations (which are ordinary differential equations) are approximations
to a non-linear partial differential equation resulting from the invariant
imbedding. (As a matter of fact this non-linear partial differential equation
can also be obtained by using the dynamic programming approach. )

If we are given a system by

X = f(x,t) + v(x,t) u (2.5.1)

¥y = h(x,t) + (Observation Error) (2.5.2)
where:

X = n=-vector

f(x,t) = n-vector function

f=1
]

p-vector random dynamic input



96

v(x,t) = n*p-vector function
h(x,t) = m-vector function
y(t) = m-vector output (= observation)

then, according to Ref, 3, an appropriate set of sequential estimator equations

are:

>
|

= £(%,T) = 2P(T) H(Z,T) Q{y(T)-h(x,T)} (2.5.3)

&l

2/
]

j—T £2(5T) P(T) + B(T) F2(x,7) + 2P(T)[H(X, 1) Q{y(T)-h(%,T)}1.P(T) + R

(2.5.4)

where X: denotes the least-squares estimate of x;

3f
£a' = (-.._1.), the Jacobian matrix of f;

A

o g

?é : denotes the transpose of fa;
ahi
H= (-——), the Jacobian matrix of h;

5

= (Pij)’ n'n symmetric matrix;

o)
|

Q = quasi-norm factor (we take Q = 1);

R = quasi-norm factor (n.n matrix);

H
1

running observation time;

[H(Z,T) Q{y(T)-h(%,T)}]; = nen matrix with i column:

2. [8(%,7) afy(1)-h(%,1)}]
3



Since in our cases we always will assume for the observation vector that

y; = x; + (state-independent Random Observation Error) (2.5.6)
i=1 ¢+ , m<n

Therefore, we always will have for Eq.(2.5.4):

1

P = £.P+ P, - 2PHQHP + R (2.5.7)
where
O . . . . . O.\
0 1 0 + + « + o
.« 0 . %
H=| | | L (2.5.8)
j
. . . ’
/
0 0 . . . . . O i
and
//l O . . . . .
S0 1 0 v e e
i . O .
i
_ * [ L] i
} (2.5.9)

In the H and HQH matrices the number ™m" of the diagonal elements

different from zero is equal to the dimensionality "m" of the observation

vector (2.5.6).
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Equations (2.5.3) and (2.5.7) are the basic filter-equations which we
will apply in the subsequent Sections for sequentially estimating states
(and parameters) in the atmospheric descent problems. As one can see
Egs.(2.5.3) and (2.5.7) are ordinary, coupled, non-linear differential

equations. The observations y(T) appear as forcing terms in Eq.(2.5.3).

1

The matrix R~ in Eq.(2.5.7) can also be regarded as a forcing term for

the P-equation (2.5.7) which can be named as a matrix gain equation.
In solving (or implementing) Egs.(2.5.3) and (2.5.7) one can start with

assumed (= freely estimated) values for % at T = O, but, one has to find

the proper starting values for the P-equations., At the same time one also has

to select proper values for the (Rijlgrmatrix. Due to the non-linear character
of the filter-equations (2.5.3) and (2.5.7) this question has to be investigated
for each problem. The main problem in solving the non-linear filter-equations
is, therefore, how to determine the appropriate Pij(o) and Rij values which
will assure that the estimated x(T) values, based on measurements y(T) and

on the dynamic description f(x,t) of the system, will properly converge to

the true values of x(T).

2.6. Sequential Estimation of State in Vertical Descent. (Assuming perfectly

known parameters.)

Considering a free fall trajectory (= no thrusting), and, making the same
assumptions on coordinate system, gas-dynamic forces, atmospheric density dis-
tribution as they were outlined in Sections 2.2 and 2.3, we obtain the
following differential equation governing the behaviour of the space vehicle.

x =K exp(- bx) X - g+ u(t) ; K g

5]

(2.6.1)

d . . . 3 K3
where x, x, x = position, velocity and acceleration respectively;
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g = acceleration of gravity (considered as a constant on a limited
part of the trajectory);
m = mass of the space vehicle (constant, since we don't apply thrust
in this limited part of the trajectory);
u(t) = random dynamic disturbance;
K',K = parameters (constants), reflecting the gas dynamic characteristics
of the atmospheric flight;
b = parameter (constant), reflecting the physical characteristics of

the planetary atmosphere.

"
»

1 & X (altitude, measured as a positive distance from the landing-

ground upward )

>

X, % (velocity, measured as a negative quantity downward to the
landing-ground)

Then Eq.(2.6.1) can be rewritten as

X) =X, (2.6.2)

>
1]

5 K exp(- bxl) xg - g+ u(t) (2.6.3)

which constitute the system equations of the problem considered in this section.

A. Given noisy position measurements only.

In this case we have a specified one-dimensional observation vector:

{position} = y,(T) = x,(T) + (Observation Noise) (2.6.4)

This gives for the H and HQH matrices




100

[}
/ 1 \
= . | (2.6.6)
| =Kbx, exp(- bxl) ZKXZ exp(~ bxl)}

\ 3
and we have a P = 2 x 2 symmetric matrix. Thus the sequential estimator
Egs.(2.5.3) and (2.5.7) for this problem become:

Ry =X, + 2Pll(yl-xl) (2.6.7)

N a2 R .

X, = Kx, exp(- bxl) -g+ 2P12(yl-xl) (2.6.8)

B = - 2P° 4 2P, + R! (2.6.9)
11 12 12 7 T11 D

Py, = P,, = 2P Py + (ZPlZ-Pllbxz) szexp(— bxl) + B, (2.6.10)
L _ 2 N - ~ . A - ~ 1
Py, = = 2P, + 2(21>22 Plszz) szexp( bxl) + R}, (2.6.11)

where R!. are elements of the (R].-J.)-l matrix.

B, Given noisy position and velocity measurements.
Since in this case we have a specified two-dimensional observation vector




1ol

//position\ : yl(T)§ / xl(T) + (Observation Noise)\

. | = L= | (2.6.12)

| velocity; ! yZ(T) / t XZ(T) + (Observation Noise)

4 ; " H \ ;

hy i : :
therefore the H and HQﬁ matrices become

‘)
1 0! _ 1 o0
H = z HQH = (2.6.13)
\O 1 0 li
The Jacoblan fa is the same as before, see Eq.(2.6.6), and, we have

a P=2x2 symmetric matrix, Thus the sequential estimator equations
(2.5.3) and (2.5.7) for this problem become:
X, =%, + ZPll(yl-xl) + ZPlZ(yZ'XZ) (2.6.14)
: -~ 2 ~ ~ "~
X, = Kx, exp(~ bxl) - g+ 2P12(yl-xl) + ZPZZ(yZ-XZ) (2.6.15)
P.. = 2P, - 2P°. - 2P5_ 4 R! (2.6.16)
11 12 11 12 11 T
L2 _ - - A~ ~ - ~ '
P, = P, 2P12(Pll + P22) + (2P12 Pllbxz) Kx,, exp( bxl) + R, (2.6.17)
. _ 2 2 _ ~ ~ - ~ 1
P, = - z(P12 + P22) + 2(2P22 Piszz) szexp( bxl) + R, (2.6.18)

where Rij are elements of the (Rij)-l matrix in Eq.(2.5.7).

2.7. Sequential Estimation of State and One Parameter (either the atmospheric

density or the gasdynamic drag parameter) in Vertical Descent.

In this section we again consider a free fall trajectory. The basic
dynamic equation we will start with is the same as Eq.(2.6.1). But we take
‘ one of the parameters in Eq.(2.6.1) -- either K or b -- as imperfectly

known.
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By defining the imperfectly known parameter(s) in the dynamic equation
as new state variable(s), -- which amounts to augmenting the problem's state
space -- the imperfectly known parameter(s) can be modelled as solution(s)
to ordinary differential equation(s) with unknown initial condition(s).

This technique will allow us to handle all the sequential estimation problems
in the unified view of state space.

Taking "K" in Eq.(2.6.1) as imperfectly known, we define it as a third

state variable:

X, = X, (2.7.1)
iz = %3 exp(=- bxl) xg - g+ u(t) (2.7.2)
>23 =0 | (2.7.3)

Taking "b" in Eq.(2.6.1) as imperfectly known, we define it as a third

state variable:
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e
1]

o = K exp(- X3Xl) xg - g+ u(t) (2.7.5)
X = O (2.7.6)

A, Given noisy position measurements only.

The observation vector is a specified one-dimensional one in this case

{position} = yl(T) = xl(T) + (Observation Noise) (2.7.8)

which gives for the H and HQH matrices:

1 .1 0 o©
H= 0 HQE= .0 0 0 (2.7.9)
100 0
In the case of Xq 8 K, the Jacobian fo becomes (from Egs.(2.7.1-3)):
/ i
f 0 1 o)
_ ; AZA A~ A A ~ Az ~
fa = - bx2x3 exp(- bxl) s 2x2x3 exp(- bxl) . exp(- bxl) : (2.7.10)
0 0 0

and we have a P =3 x 3 symmetric matrix. For the sequential estimator

equations (2.5.3) and (2.5.7) we then obtain:

il =%, + ZPll(yl-il) (2.7.11)
éz = §3 exp(~ bil) ﬁg -g + ZPlz(yl-ﬁl) (2.7.12)
§3 = 2Pl3(yl-ﬁl) (2.7.13)
B =-2p° 4 2P+ R (2.7.14)
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AZA A A A ~
2PllPlz + P22 - bx2x3 exp(- bxl) P, + 2x2x3 exp(- bxl)
32 exp(- bX.) P._ + R!
2 1 13 12

2P + R!

11F13 * Po3 * Ri3

2 AZA A AN ~
2Py, - bezx3 exp(- bxl) P, + hx2x3 exp(- bxl) P, +

a2 . .
2x, exp(- bxl) P23 + R

P

1x3)

(2.7.15)

(2.7.16)

(2.7.17)

(2.7.18)

(2.7.19)

(2.7.20)

22
A2A ~ ~ ~ ~
2P12P13 - bx2x3 exp(- bxl) P13 + 2x2x3 exp(- bxl) P23 +
%2 exp(~- bX,) P, + R!
2 17 733 23
2
2P R!
137 733
the case of %3 4 b, the Jacobian fs becomes (from Egs.(2.7.4-6)):
0 1 0
- K&%% exp(~ x.x%,) 2% K exp(- x.x,) - KR %C exp(-x
o3 3¥X1/ 2 %1/ s 1%2
0] 0 0

ce we have a P =3 x 3

or equations (2.5.3) and (2.5.4):

Ko
|
el
+
oY
HJ

K> e
3V
]
=}
[0}
]
Lol
~~
1
o]
w
]
|
p—
b
NN
)
w®
+
S
[
oo
<
=]
1
x>
]
p—

symmetric matrix, we obtain for the sequential

(2.7.21)

(2.7.22)
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1

3 = 2Pl3(yl-xl)
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o 2 '
Pll = - 2Pll + 2P 1o F Rll
L4 AZA AN
Piy = = 2P Py, + Pos - szx3 exp(- x3xl) Pig o+
~ A A A A2 A A '
2KX,, exp(~ x3xl) P, - K& x, exp(- x3xl) Pi3 + Ry,
T - 1
Pl3 = 2PllPl3 + 2P 23 + Rl3
B = - 2p° - 2k%%R exp(- X x ) P._ + LKX_ exp(- x.Xx.) P._ -
22 12 2%3 1 2 3*¥1/ Fop
2Kk %° exp(- X.%x,) P._ + R!
172 371 23 22
P23 = 2P12Pl3 K2 x3 exp(- X xl) + 2Kk, exp(- x3xl) P23 -
Kﬁlﬁ exp(- x xl) 33 3
P = - 2P2 + R!
33 13 33

B. Given noisy position and velocity measurements.

The observation vector is a specified two-dimensional one in this case

(see Eq.(2.6.12)), and that gives

In the case of x

3

since we have a P

II

estimator equations:

0
0
0

/ 1 0 o)
) HQH 0 1 o
o 0 0

K the Jaccbian fp is the same as Eq.(2.7.10), and,

3x3

symmetric matrix, we obtain for the sequential

(2.7.23)

(2.7.24)

(2.7.25)

(2.7.26)

(2.7.27)

(2.7.28)

(2.7.29)

(2.7.30)
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X =X, + 2Pll(yl-xl) + 2P12(y2-x2 (2.7.31)
/.\ ~ "2 A~ ~ ~
Ky = XX, exp(- bX,) - g + 2P12(yl—xl) + 2P22(y2-x2 (2.7.32)
b = - 2p% - 2P° 4 2P._ + R! L
11 = 7 &Fqp = 8Py * 2P, + Ryy (2.7.34)
A A2A A~ A A "~
Py, = - 8PPy, = 2P P, + P, - bx2x3 exp(- bxl) Py + 2x2x3 exp(- bxl) P, +
%2 exp(- bR,) P, + R}, (2.7.35)
2 1 13 o
T - - 1
Pl3 = 2PllPl3 2P12P23 + Pyt R13 (2.7.36)
B = - 2P% - 2P° - otk exp(- bX,) P, + LX X exp(- b%.) P._ +
22 12 22 273 1 12 23 1 22
A2 . ,
2x,, exp(- bxl) P23 + RS, (2.7.37)
. ,\ZA ~
P23 = - 2P12P13 - 2P22P23 - ‘szx3 exp(- bx ) 13+ 2x x3 exp(- bxl) P23 +
A2 A T
x5 exp(- bxl) 23+ R23 (2.7.38)
L 2 2
P = - - 2P R'. 2.7
» 2P 5 o3t B3 (2.7.39)

In the case of x3 g b the Jacobian fﬁ is the same as Eq.(2.7.20).

Since P =3 x 3 symmetric matrix, the sequential estimator equations became:

Xy =%, + ZPll(yl-xl) + 2P12(y2-x2 (2.7.40)
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A A A2 ’S ~
K exp(- X3xl) X, - g+ 2P12(yl—xl) + 2P22(y2-x2)

K.
I

x3 = 2Pl3(yl-xl) + 2P23(y2-x2)

. 2 2 :
by = - 2Py - 26l + 2P + R
P1g = = 2P3P1p = 2P),Poy + Py

(2.7.41)

(2.7.42)

(2.7.43)

AZA ~ A ~ A A
P - K'xzx3 exp(- x3xl) Py + 2Kx,, exp(- x3xl) P, -

o A2 .

lex2 exp(- X3Xl) Pl3 + R:I'_2 (2.7.44)
Py = - 2P ) Ppo - 2P Pps + Poy + Bi, (2.7.45)
P__ = - 2P° - 2P° - 2K&%% exp(- X.%,) P,, + LKX_ exp(- %.%X,) P.. -
22 = 12 22 o3 SXPL= XXy ) Fip o SXPL= X3Xq) Fop

A A2 ~ A

2K, X, exp(- X3Xl) P23 + RL, (2.7.46)
. P A A ~ AN
P23 = - 2P12P13 - 2P22P23 - szx3 exp(- x3xl) Pl3 + 2Kx, exp(~ X3Xl) P23 -

o o

lex2 exp(- X3Xl) Pé3 + Ré3 (2.7.47)
P = -2P° 4+ 2P° 4+ R (2.7.48)
33 13 23 33 e

As one can see the only difference in the P equations for the specified

one- and two-dimensional observation vectors comes from the term ZPHQﬁP of

Eq.(2.5.7). This means

/ 2

/i Fio

(2PHQHP) = (2PHQHEP) Foe/e
in the case of in the case of !

two dimensional one dimensional i . /
obs, vector obs., vector \

\

F1efez F1aPe3 |
2 i
Paa FaoFes
2
./o P23 ‘l‘



108

The difference in the x equations in the two cases is

~ \'\ ,"I A \
*1 [ / Fio
d X =4 ; b % + : P i (y.-%
T *2 B 22 | W™
v \ g e/
3 “\ 3 y 23,
in the case of " in the case of ' /
two dimensional one dimensional
obs., vector obs. vector

2.8. Sequential Estimation of State and Two Parameters in Vertical Descent.

The free fall trajectory is considered in this Section, too. This means
that the basic dynamic equation we will work with is the same as Eq.(2.6.1).
But we will regard both "K" and "b" parameters in Eq.(2.6.1) as imper-
fectly known parameters.

Using the same arguments as they were outlined in the first part of

Section 2.7, we augment the state space of the problem by defining

e
O'e
1
o

ne>
e
n
O

h

Thus the system equations become:

Xl = Xz (2.8.1)
iz = x, exp(- x3xl) xg - g + u(t) (2.8.2)
i3 =0 (2.8.3)

ih =0 ' (2.8.4)




109

A. Given Noisy Position Measurements Only,

Since the observation vector is one-dimensional (see Eq.(2.7.8)) we have

for the H and HQﬁ matrices:

//1 o 0 o0 1 0 o ()\
0 0 0 o _ 0 0o 0o o
.0 0 0 © 10 0 0o o]
| | \ !
0 0 0 0 o 0 0 o

For the Jacobian fa we obtain from Egs.(2.8.1-k4):

\

/ 0 1 0 0 \
/ '
/ 2a A A a2 2 Ay

fo = { - XXX, exp(—xlx3) N szxhexp(-xlXB) , -xlxaxuexp(-xlx3) s xzexp(xlx3)‘

0 0 0 0 ‘
\\ 0 0 0 Y !
(2.8.5)
Since P =4 x 4 symmetric matrix, the sequential estimator equations

become:

X) =X, +2 Pll(yl-xl) (2.8.6)

. “X.X

A _l\t\z 13 -A

X, =xke -g+ 2P12(yl xl) (2.8.7)

Xy = 2P13(yl-xl) (2.8.8)

X = 2Plu(yl-xl) (2.8.9)

Pll = - ZPll + 2P12 + Ril (2.8.10)
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. AZA ~ AN A~ '\ZA
P = = - -
12 2P11P1p Py + Pn¥p%x), + 2P %o, = PXoxok) +
1\2 ~ ~
Plhxz) exp(-xlx3) + Ry,
T = - 1
Pl3 = 2PllP13 + P23 + R13
= - - '
Py = = 8Py Py, + By + Ry
. _ 2 A~ A A A A ADA A2
P, = - 2P, + 2(- P12x2x3xh + 2Py X X - P23xlx2xh + quxz)
- 3z 2 '
exp( xlx3) + Rl
P =-2P, P _ 4+ (- P RR% + 2P %% -P 23% 4 p %)
23 12713 1372737h 23727, 33712 3472
exp(= 2123) + Ré3
P, = - 2P f + (- P KR %, + 2P, R.% - P, R Rom + P )
2k 1271k 147237, 2427y 34712 Lyt
exp(- £l§3) + R},
P, = - 2p% +R!
33 13 33
ﬁ .

3y = = 2PpaPyy + B3y
B, = - 2P° + R
Ly = 14 Ll

B, Given noisy position and velocity measurements.

The observation vector in this case is a specified two-dimensional one

(see Eq.(2.6.12)), and that gives:

(2.8.11)

(2.8.12)

(2.8.13)

(2.8.14)

(2.8.15)

(2.8.16)

(2.8.17)

(2.8.18)

(2.8.19)
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The Jacobian fy is the same as Eq.(2.8.5), and,

matrix,

0 0
1 0
0 0
0] 0
P=L4x )k

symmetric

The sequential estimator equations in this case would differ from those

(Eqs.(2.8.6-19)) derived for the case of the specified one-dimensional obser-

vation vector by the following terms:

e

11

Hje

12

tJe

Hje

13

1k

e

22

= Eq.(2.8.10) - 2P

Eq.(2.8.6) + zplz(yz-iz
Eq.(2.8.7) + 2P22(y2-§c2

Eq.(2.8.8) + 2P23(y2—§2

Eq.(2.8.9) + Zqu(Yz‘ﬁz

= Eq.(2.8.11) - 2P P,
= Eq.(2.8.12) - 2E12P23
= Eq.(2.8.13) - 2P Py,
= Eq.(2.8.14) - 2P§2

(2.8.20)

(2.8.21)

(2.8.22)

(2.8.23)

(2.8.2h4)

(2.8.25)

(2.8.26)

(2.8.27)

(2.8.28)
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?23 = Eq.(2.8.15) - I (2.8.29)
?Zu = Eq.(2.8.16) - 2PP,) (2.8.30)
P,y = Ba.(2.8.17) - 280, (2.8.31)
i3u = Eq.(2.8.18) - 2P, P, (2.8.32)
By, = Ea.(2.8.19) - 2B, (2.8.33)

2.9. Sequential Estimation of State in Ballistic Descent (assuming perfectly

known parameters).

Considering the free ballistic trajectory (= no thrusting) and omitting
the differential equation describing the ground range "s" of the space vehicle

(Eq.(2.2.11)), and, defining

Xy &y (altitude above surface)
A

X, = Q (path angle)
A .

Xy =V (velocity)

and using the same assumptions as we did in Section 2.2, we have the following
differential equations (see also Egs,(2.2.10), (2.2.12), (2.2.13)) for esti-

mating the vehicle's state:

X, = - X%, sin X3 (2.9.1)
. /g Xs
X2 = \-}-C-é. - ﬁ— cos X3 | (2.9.2)
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)::3 = g sin X3 - K exp(- bx,) x 2, u(t) (2.9.3)

2

e

]
where K %1{— 3 m = mass of the vehicle and K' is defined by Eq.(2.2.9)

u(t) = random dynamic noise

g,b,R = as defined in Section 2.2. (Acceleration of gravity, inverse scale
factor for atmospheric density, radius of the planet, respectively.)

A. Given Noise Position Measurements Only.

By "position" we mean in this case: altitude from the surface and path

angle, Hence the observation vector becomes:

altitude / yl(T) ,'! xl(T) + Observation Noise\
!

= = 'l !
v (T) | \ x_(T) + Observation Noise
2 / \ 72 ;

i i /

path
angle

This gives for the H and HQH matrices

0 o0 1 0 o
H=[0 1 o] |, HQE = | 0 0 (2.9.5)
0 0 / 0 0 /
The Jacobianv f; becomes (from Egs.(2.9.1-3)):
/ . \
/ 0 - sin x3 - xz cas x3 ‘
ik g 1 /g XZ N
fa = 0 -[== + =jcos x -|— - ==|sin x (2.9.6)
X \ (xzz R 3 1\x2 R 3 /
\bezzexP(- bxl) - 2Kx2exp(- bxl) g cos X3 /
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For this problem we have a P = 3 x 3 symmetric matrix. Thus the sequential

estimator Egs.(2.5.3), (2.5.7) in this case become:

X = - %y sinky + 2 Py, (yy=%;) + ZPlz(yz-xz (2.9.7)
. g ﬁz .
Xy = === cos &+ ZPlZ(yl'xl) + ZPzz(yZ-xz) (2.9.8)
X R
2
. o Ay a2
Xy = g sin X, - K exp(- bxl) X," + 2P (yl l) + 2P23(y2-x2) (2.9.9)
P, = - 2( 2 + ) 2(P,, sin x, + P._ cos %,) + rt (2.9.10)
11 12 3 13 3 11 i
P._ == 2(P + ) - , sin %, - P, X, cos X, - P £ A\ cos
12 11 12 lZ 22 3 2372 3 12 2 2 R 3
2
g X
- P — - Zlsin £+ R (2.9.11)
13 | ~ ) 3 12 e
X R
-2
. B -~ a ~ I\2 -~
P13 = - 2(P 11 13 * 12P23) - P23 sin %3 - P33x2 cos Xg + P, bKx,, exp(= bxl)
- 2P} Kx exp(- bxl) + P 138 ©os x3 + R13 (2.9.12)
vg }2\'
b 2 2 g .1 % - e o 2 ' 1
Pop = = 2(P{, + F,) - 2P22(§24- > cos Xg 2P23§£ " ;sin x3 + R}, (2.9.13)
2 X2 /
. Ag 1 . /g ﬁé}
P23 =« 2(P 1o 13 + P, 23) 2 \ =t ; cos X3 - P k;— - ;—-s1n x3
2 /
+ P, be exp(- bxl) - 2P, Kx exp(- bxl) + P 238 cos x3 + R23
(2.9.14)
. 2 2 AL ~ - A - _ Py '
P33 = - 2(1313 + P23) + 2Pl3be2 exp(~ bxl) hP23Kx2exp( bxl) + 2P33 cos x3 + R33
(2.9.15)

-1
where Rij are elements of the R matrix.
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B. Given noisy position and velocity measurements,

In this case we have the following observation vector:

[/ altitude\ / yl(T) / xl(T) + Observation Noise\
| path | / / !
| [P = i i !
| engle = ¥, (T) | x,(T) + Observation Noise | (2.9.16)
\-, velocity / ""\ y3(T) \x3(T) + Observation Noise /’
\

which gives for the H and HQ,T-I- matrices

1 0 o \ 0
H = | 0 0O, HHE=|0 1 o0 (2.9.17)
\o 0 1/ 0 0 1/

The Jacobian £ is the same as in Eq.(2.9.6), and, P =3 x 3 symmetric
matrix,

The sequential estimator equations in this case will be different from
those Egs.(2.9.7-15)) derived for the case of the specified two-dimensional

observation vector by the following terms:

él = Eq.(2.9.7) + Zfﬁs(y3'ﬁ3 (2.9.18)
éz = Eq.(2.9.8) + 2P23(y3->23 (2.9.19)
%3 = Eq.(2.9.9) + 2Py5(y5-K,) (2.9.20)
b, = Eq.(2.9.10) - ZPi3 (2.9.21)
ﬁlz = Eq.(2.9.11) - 2PyPyq (2.9.22)
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i°13 = Eq.(2.9.12) - 2P) 5P (2.9.23)
b, = Eq.(2.9.13) - ng3 (2.9.2k)
i>23 = Eq.(2.9.14) - 2Py sPas (2.9.25)
1533 = £q.(2.9.15) = 2P, (2.9.26)

Numerical Results in Sequential Estimation of State and Parameters in

2.10.

Atmospheric Descent.

In order to be able to investigate the feasibility and convergence prop-

erties of the proposed non-linear filter equations discussed and derived in

the previous Sections (Sections 2.,5-9) we have made some numerical experiments

(called "digital simulating”) on the computer.

A,

Digital simulating of the non-linear filter.

The dynamic noise (DN) and observation noise (ON) in the process of digital

simulating have been modelled according to the following expressions:

where

For DN: u, = clél(t) (2.10.1)
For ON: u, = czgz(t) (position measurement) (2.10.2)
uy = c3§3(t) (velocity measurement) (2.10.3)

El(t),iz(t),§3(t) are, for each "t", statistically independent random

variables, uniformly distributed between [+1, -1], and,

are constants, adjusted to the relative magnitude of the

©15Cps Cq

dynamic and observation noises, respectively.
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This type of noise-modelling is in complete accordance with the general
‘ assumptions which were made in deriving the non-linear filter equations, and,
reflects the fact that we have no information on the statistics of the acting

dynamic and observation noises whatever,

Digital simulating of the non-linear filter (or sequential estimator)

equations contains the following phases:

(2) We generate the system trajectories (for the dynamically perturbed
systems, using Eq.(2.10.1) for the dynamic noise) by solving the
relevant system equations for given initial conditions.

(b) We generate the noisy observations ,yi(t), which means: we corrupt
the output data from Phase (a) with observation noise given by
Egs.(2.10.2-3).

(¢) We use the generated yi(t) as input to the relevant sequential

‘ estimator equations which then are solved for assumed initial values
for ii and Pij'
The procedure of digital simulating is schematically depicted on Fig. 2.10.1.

In the case of vertical descent the true system trajectories were generated

for the following parameter values and initial conditions:

k8K _ 0.5 107 [m_l]
m
b = 1.0 107 [m'l]
2
g = 5.0 [m/sec”]
x2(0) = 7.0 10° [m/sec]
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The selected values for "K" and "b" represent relatively thin atmospheric
conditions. (These parameter values give about 0.2g deceleration due to
the drag at the selected initial values on Xy and XZ') In the calculations
we have assumed, furthermore, that "K" is constant on a limited part of the
trajectory.

In generating noise we have assumed 4-8% dynamic noise, and, 0.5-1.0%
observation noise in position measurements, and, 1.0-2.0% observation noise
in velocity measurements. These %-s roughly give for the adjustable constants
c. 1in Eqs.(2.10.1-3):

1

0.12 - 0.24 [m/secz]

c, =
¢, = 200.0 - 400.0 [m]
¢y = 6.0 - 12.0 [m/sec]

As one can see the maximum value of the dynamic noise (cl) corresponds roughly
to 10-20% of the deceleration due to the assumed value of the drag force.

In solving the sequential estimator equations we used % 5-7% wrong
estimates for the initial values of the state variables, and, + 50% wrong
estimates for the "initial values" of the parameters. These values roughly

correspond to
0.93 10° < ﬁl(o) < 1.07 10° [m]
2 _ 2
6.5 10° < x2(0) < 7.5 10° [m/sec]

0.25 10™° < R(0) = 0.75 107 [m'l]
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0.5 107 < b(0) < 1.5 10~ [m'l]

(The assumed wrong initial estimates for "K" and "b" in the dynamic
equations affect only the deceleration due to the drag. In view of
Eq.(2.7.2) this means that we have éZ(O) = 0.2¢ - g £ 0.1g + 0.0Lg =

- 0.8g + 0.1kg +» 20% uncertainty in the acceleration at ¢ = O, And, at
the same time, we also have the 5-7% uncertainties in the initial estimates
of the velocity and the position.)

In solving the gain equations (the "P" equations derived from Eq.(2.5.7)):

(a) we have put the off-diagonal elements of the R-l matrix equal to
zero and just tried to select proper diagonal elements for R-l;

(b) we have always used zero as initial value for the of f-diagonal
P-equations and tried to select proper initial values for the
diagonal P-equations only,

The "proper" Ri, and Pii(o) values were selected by trial-and-error
technique.

In selecting "proper" Rii and Pii(o) values we have used the following

fairly obvious simultaneous criteria: a good sequential estimation must

(a) converge fast to the true trajectory;

(b) have a stable (smooth) behaviour along the true trajectory;

(c) Dbe insensitive for a given class of "wrong" initial estimates;

(d) such that (a), (b), (c) be met for all estimated variables.

The digital simulating was carried out on the IBM TO9% computer using
two CIT subroutines: NRAND for generating random numbers, and, DEQ (fixed
mode version) for integrating the differential equations. For integration step
we always used AT = 0.01 sec. The total integration ("estimation") time was

20 sec in each case.
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B, Discussion of results.

‘ Regarding the "digital experiments" we have run we can make the following

general remarks,

(a)

(o)

(e)

® o

The gain equations (the "P" equations) settle down on some

asymptotic Pi‘if) values in each case. This usually occurred
J
after 10-15 sec estimation time.

The dominating factors in achieving "good estimates" in the above-

specified sense are the selected (constant) values of the Ri, terms,
(In this connection it is interesting to note that by choosing

R~ =0 some estimated trajectories did not converge to the true
trajectories at all, but they run parallel to them in a distance
determined by the wrong initial estimates.)

Both the order of magnitude of the Ri, terms and the ratios Rii/st
are important factors in achieving "good estimates",

Since the P,; equations represent (second order) approximations

to the optimal value of the "cost functional”, one has to select the

initial values for the Pii equations in the neighborhood of the

optimal solution. (Or equivalently: in the region of convergence.)

But variations in the Pii(o) values in the region of convergence do

not markably affect the "goodness" of the sequential estimation,

Some representative results of digital simulating we so far have obtained

are shown in Figs, 2,10.2-11, Among those Figures we especially call attention

to Figs, 2.10.8-8.a which display trajectory-characteristiecs markedly different

from those depicted in Figs. 2.10.2-7. Marked differences are manifested not

only in the transient part of the estimated trajectories but also in the

behaviour of the asymptotic part (in the smoothness) of the trajectories,

. These marked differences have their source in reversing the order of magnitude

of the Rii terms., Observing that fact we used it as a guide in selecting

"PI‘ oper "

Rii values in our calculations,.
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The best results we have obtained in estimating position and velocity

having only (noisy) position measurements are displayed in Figs. 2.10.2-2.a.

As we can see in these Figures after 3-U sec estimation time (corresponding

to the transient part of the estimated trajectory) we have a "smooth estimate"
on position with an error amplitude corresponding to 1/10-th of the measurement
noise (which is equivalent to 20-40 m in our numerical example), and, after
12-13 sec transient estimation time we have a "smooth estimate" on velocity
with error amplitude ~ 4-5 m/sec. The results shown in the other Figures
(Figs. 2.10.3-7) display slower convergence to the true trajectory, or, they
are associated with higher error amplitudes and frequencies, or, they are more
sensitive to the chosen class of wrong initial estimates than those results
which are depicted in Figs. 2,10.2-2,a.

The best results we have obtained in estimating position and velocity

having both position and velocity measurements are shown in Figs. 2,10,9-9.a.

As one can see in these Figures after 1,5-2.0 sec transient estimation time

we have a "smooth estimate" on position with an error amplitude corresponding to
1/12-1/15-th of the measurement noise (which is equivalent to 10-30 m in our
example), and, after L4-5 sec transient estimation time we have a "smooth
estimate" on velocity with an error amplitude corresponding to 1/8-th of the
measurement noise (which is equivalent to 1-2 m/sec in our example), The se-
quential estimation résults, by using those Rii values which were applied for
the "best trajectories" depicted in Figs. 2.10.9-9.2, are very much insensitive
to the (wrong) initial estimates on the state variables as it is clearly demon-
strated by Figs. 2.10.10-10.,a. On the other hand, Figs. 2.10.1l-1l.a clearly
show the importance of the order of magnitude of the Rii terms and their

ratio in obtaining good sequential estimates on the state variables.
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2.11, New, Asymptotic Non-linear Filter Equations,

It turns out, as we have pointed out in the previous Section, that the
Gain Equations of the proposed Non-linear Filter settle down on some asymptotic
Pij(w) values in each case of our estimation problem. This very fact suggests
the idea of simplifying the sequential Estimator Equations which were derived
in Sections 2.6-9 by simply omitting the Gain Equations (the ﬁij equations)

from the filter equations and using only the State Estimator Equations (the %

equations) with the precomputed, proper asymptotic values of Pij‘ The new,
Asymptotic Non-linear Filter Equation, which we propose here, has the following

general form:

a

7 X = f(x,T) + 2P(») H(X,T) Q{y(T)-n(x,T)} 2.11,1

u

where the symbols have the same meaning as it was explained in Section 2.5,
and, P(x): precomputed, proper asymptotic values of the gain matrix P,

We run some digital experiments by using Eq.(2.11.1) and obtained sur-
prisingly good results. (In the subsequent computations we have used the same
numerical values for constants, for initial values, for generating noise, etec.
as we did in Section 2.10.)

In the case of estimating position and velocity having only position measure-

ments we have, according to Eq.(2.11.1), the following simplified non-linear

filter equations (obtained by omitting Egs.(2.6.9-11) and using only Egs.

(2.6.7-8) with proper Pij(m) values):

Xy =%, 4 2Pll(®) (yl-xl) (2.11.2)

P> e
1l

KR, exp(- bE;) - g+ 2P, (®) (y-%,) (2.11.3)



1Lk

where we have applied the following asymptotic gain values:

P, (=) = 0.849

(2.11.4)
Plz(m) = 0.221

These gain values were obtained by the computations which provided the "best
results" depicted in Figs. 2.10.2-2.a. (The symbols in Eqs.(2.11.2-3) have
the same meaning as in Section 2.6.)

The results obtained by the proposed, new, Asymptotic Non-linear Filter
Equations (2.11.2-4) are displayed in Figs. 2.11.1-1.a. Comparing these

Figures with Figs, 2.10.2-2.a we observe that the simplifications used in the

Non-linear Filter Equations only affect the transient part of the estimated

trajectories, keeping the "good properties" of the filter unchanged,

‘ (Relative insensitivity to wrong initial estimates on the state variables,
accurate reproduction of all state variables, stable, smooth behaviour around
the true trajectories.)

In the case of estimating positon and velocity having both position and

velocity measurements, we can, according to Eq.(z.ll.l), use the following simpli-
fied non-linear filter equations (cbtained by omitting Egs.(2.6.16-18)) from
the Sequential Estimator Equations and using only Eqs.(2.6.14-15) with proper

Pij(w) values):

Xy = %y + 2P (@) (yy-R)) + 2P (=) (7,75, (2.11.5)

Mo e
1}

5 szexp(- bxl) -g+ 2P12( )(yl xl) + 2P22( )(y2 X, (2.11.6)

where we have applied the following asymptotic gain values:
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Pll(w) = 2.255
P ,(®) = 0.095 (2.11.7)
P,,(®) = 0.532

These gain values were obtained by the computations which provided the "best
results" depicted in Figs. 2.10.9-9.a. (The symbols in Egs.(2.11.5-6) have
the same meaning as in Section 2.6.)

The results obtained by the proposed, new Asymptotic non-linear Filter
Equations (2.11.5-7) are shown in Figs. 2.11.2-2.a. Comparing these figures

with Figs. 2.10.9-9.a we see again that the simplifications introduced into the

Non-linear Filter Equations, resulting the new, Asymptotic Non-linear Filter

Equations, affect only the transient part of the estimated trajectories,

keeping the "good properties' of the filter unaltered.

In order to investigate how variations in the Pij(w) values influence

the estimated trajectories belonging to the new, Asymptotic Non-linear Filter

Equations we made several "digital experiments" applying different Pij(W)
values which were previously obtained for different Pij(o) and Ri, values.
Figures 2.11.3-3.a display some of the estimated trajectories obtained by
P, (=) = 0.069,
Pzz(w) = 0.167 used in obtaining Trajectory No. 1 in Figs. 2.11,3-3.a come

using different Pij(m) values. (The values Pll(m) = 1,032,

from computations with Pll(O) = 2.0, PZZ(O) = 0.2, 2.0, R}, = 0.2).

t -
Rl =
Comparing Trajectories No. 1 in Figs. 2.11.3-3.a with the estimated trajectories
in Figs. 2.11.2-2.a we see that altering the Pij(W) values affects significantly

only the transient part of the estimated trajectories; other properties of the

estimated trajectories are insignificantly changed. Note in this connection that

the order of magnitude of the Pij(w) values used in obtaining Trajectories
No. 1 in Figs. 2.11.3-3.a are the same as the order of magnitude of the corres-

ponding Pij(m) values which were used in obtaining the estimated trajectories
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depicted in Figs. 2.11.2-2.a. In Figs, 2.11.3-3.a we also show the

estimated trajectories (labelled with No. 2) obtained by using Pll(ﬁ) =

PlZ(W) = Pzz(w) = 1.0 as "guessed" values instead of applying some precomputed
Pij(w) values, It is interesting to observe in what extents the properties of
the estimated trajectories are changed in this case when the order of magnitude
of Pij(w) corresponds only partially to the order of magnitude of the
precomputed Pij(m) values,

We have also ran some "digital experiments"” for estimating position,

velocity and one parameter (K) having position and velocity measurements, by

using the proposed, new, Asymptotic Non-linear Filter Equations. In this case,

according to Eq.(2.11.1), we have the following simplified non-linear filter
equations (obtained by omitting Egs.(2.7.34-39) from the Sequential Estimator

Equations and using only Egs.(2.7.31-33) with proper Pij(m) values):

£ =&+ 2P () (yyoR,) + 2P (=) (7,-R,) (2.11.8)
2, = £ 22em(- bR) - 6+ B, () (3R + 2P,(=) (7,8, (2.11.9)

The symbols in these equations have the same meaning as in Section 2.7.

Instead of applying precomputed values for Pij(w) in Egs.(2.11.8-10)
we now tried to use "proper Pij(w)" determined by order of magnitude analysis
(the justification of which was demonstrated previously in the present Section),

We have found
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Pll(w) = 10

Py, (=) =107

P13( ) = 107° (2.11.11)
Pop(®) =1

Py (®) = 10~

as "proper Pij(m) values".

The results obtained by Egs.(2.11.8-11) which we termed as "tentative
Simplified Filter" because of the way the Pij(w) values were determined, are
displayed in Fig. 2.11.4, After 2-3 sec transient estimation time, as one can
see in that Figure, we have a "smooth estimate" on position with an error ampli-
tude corresponding to k;l/lo-th of the measurement noise (which is equivalent
to 40 m in our example), and, after 5-6 sec transient estimation time we have a
"smooth estimate" on velocity with an error amplitude corresponding to 1/5-1/6-th
of the measurement noise (which is equivalent to 2-3 m/sec in our example.)

The "parameter trajectory" converges asymptotically to the true (constant) value,
and, after 18-20 sec transient estimation time the estimated value of the param-
eter (K) differs from the true value only with 8-10%.

In order to demonstrate the feasibility of the proposed, new, Asymptotic

Non-linear Filter more profoundly we have performed two interesting digital

experiments": (1) by altering the dynamic state of the system (going from

acceleration over to deceleration); (2) by having systematic error in the

value of the gas dynamic parameter K',

(1) Suppose we were wrong by a factor 10 in the value of K' when we
precalculated the asymptotic value P(») of the gain matrix. In the present

example this means that the true trajectories are given by applying
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K' = 5.10-5 (kg/m) and not by using XK' = 5.10_6 (kg/m) as we did when we
. precalculated P(«), But, in estimating the true state of the system by

means of Eqs.(Z.ll.’5-6), we still use that P(») value which was obtained by

applying X' = 5.].0-6 (kg/m) in the dynamic equations of the system.

The results we obtained in this "digital simulating" are displayed in

Figs. 2.11.5-5.a, As one can see in these figures the dynamic state of the

system is essentially different from the previous state when we applied

K' = 5..‘1.0-6 (kg/m). Previously the accelerating force was greater than the

decelerating force resulting increasing velocity, (see Fig. 2.11.2.). But now

the decelerating force is greater than the accelerating force resulting decreasing

velocity. Despite this difference in the dynamic state of the system the

Asymptotic Filter, with P(®) values obtained for the state of increasing

velocity, does reproduce and estimate the system trajectories also in the state

of decreasing velocity in the desired fashion. The "good properties" of the
’ filter are not changed, and, the error amplitude of the estimated trajectories

is the same as it was previously,

(2) Suppose we believe that the parameter XK' has the value K' = 5.10"5

(kg/m). By applying this value for K' in the original Sequential Estimator

Equations (2.6.14-18) we obtained

P, (%) = 2.255

0.0938 (2.11.12)

o
[3%]
P
8
p—
It

0.54k41

But let us assume that the true trajectories and the measurements based upon

‘ them, feeding them into the Asymptotic Filter Equations where we apply values of
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Pii(w) shown in Eq.(2.11.12), are given by using X' = 6.10_5 (kg/m). This

means we have 20% systematic difference between the value of K' applied in

the Asymptotic Filter Equations and the value of K' applied in generating
true trajectories and measurements,

The results we obtained in this "digital simulating" are depicted in
Figs. 2.11.6-6.a. Trajectories labelled with No. 1 in these figures belong to
the original (unabbreviated) Sequential Estimator Equations, and, those
labelled with No. 2 belong to the simplified, Asymptotic Filter Equations. As
one can see in these Figures the basic "good properties" of the Asymptotic
Filter are unaltered. The Asymptotic Filter does reproduce and estimate the

true trajectories in the desired fashion, despite the 20% systematic error in

the applied value of parameter KX'.

The results we so far have obtained using the new, Asymptotic Non-linear
Filter Equations are very promising, indeed, Thinking in terms of implementation
of the Non-linear Filter Equations, it is hard to overemphasize the practical

implications of the proposed, new, Asymptotic Non-linear Filter Equations.

2.12, Summary and Future Work.

Defining fuel consumption as a natural performance index (and not considering
atmospheric heating effects as constraining factors), assuming, furthermore,
known atmospheric data and a specified thrust engine we have shown how to
obtain Optimal Thrust Programs for soft landing on an atmospheric planet,
Optimal Thrust Programs are obtained by applying the Pontryagin Maximum Principle
and are presented in form of Switching Functions, Calculation of Optimal Thrust
Programs can be used as a guide in specifying fuel requirements for a given
mission. Since the Pontryagin Maximum Principle provides an open-loop control
the dependence of the Switching Functions on given planetary atmospheric data

was emphasized énd demonstrated.
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The space vehicle encounts changing dynamic environments during the
course of atmospheric entry and landing maneuver. This is essentiélly due
to the change of atmospheric density from a dynamically insignificant value
at high (orbital) altitudes to a dynamically dominating factor at low altitudes.
Because of our very limited and hardly improvable knowledge on planetary atmo-

spheric conditions any control program for any landing mission to atmospheric

planets must exhibit adaptive features. By "adaptive features" we mean such

elements in the control program which are designed
(1) to estimate the current state of the space vehicle in the presence of
(external) dynamic and measurement noise and by starting with assumed
(presumably wrong) atmospheric parameter values, and,
(2) to improve (or confirm) the assumed atmospheric parameter values during
a limited phase (or limited phases) of the atmospheric flight
in order to be able to make the proper decisions in the control program to
arriving the prescribed terminal state in an "optimal" way.
The main part of the present study was devoted to investigate the feasibility
of a proposed Non-linear Filter, formulated as a system of coupled, ordinary

non-linear differential equations with unknown initial conditions, for sequentially

estimating state and parameters during a limited part of atmospheric flight,
Several interesting properties of the Non-linear Filter, as applied to the
present problem, are pointed out,

The main, new results of this investigation consist of demonstrating the
possibility of simplifying the Non-linear Filter to a considerable extent as
far as the involved mathematical operations are concerned. The introduced simpli-
fications can be properly formulated in terms of an "Asymptotic Non-linear Filter"
which exhibits the same merits as the original, complete filter does in the

present problem. By "asymptotic" we mean the possibility of precomputing the
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settled-down values of the gain matrix, and, then using these values as constants

in the State Estimator Equations from the initiation of sequential estimation in

real time. In prac£ical terms this means that, given an "n"-dimensional state
vector, the Asymptotic Filter necessitates the solution (or implementation) of
"n" coupled, ordinary, non-linear differential equations, while the original,
complete filter necessitates the solution (or implementation of N = n + }f i
coupled, ordinary, non-linear differential equations. =
Besides additional computations for feasibility studies on the Non-linear
Filter applied to the soft-lander problem, the future work will be concentrated
on (1) existence problems related to the Non-linear Filter; (2) stability of
the Asymptotic Non-linear Filter; (3) control based on estimated state, and,

(L) reconsiderations of some fundamental aspects of the non-linear filtering

problem,
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APPENDIX A

APPROXIMATING THE VECTOR, SEQUENTIAL, NONLINEAR, IEAST
SQUARES FILTER FOR EASE OF IMPLEMENTATION

Introduction
Nonlinear Filter
Consider the system,
x = g(t,x) + K(t,x)u (A.1)
y(t) = h(t,x) + (unknowables) (A.2)
where, x: nx 1l state vector

g(t,x): nx 1 vector function
k(t,x): n x p matrix function
u; px 1 unknown input
h(t,x): mx 1 vector function
y: mx 1 observation
No statistical assumptions are made concerning the observation error or the

unknown input. Defining the vector residual errors,

e1(t) = y(¢) - n(t,x) (A.3)
e, (t) = x - g(t,x) (A.L)
where Xx(t), 0 <t < T denotes a nominal trajectory, and criterion function,

T

I,

| ey ®llg + e, (®jg at (8.5)
0
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then the estimation problem is to minimize (A.5) with respect to x(t),

O <t <T given the observations y(t), O0<t <T. If %(t) is the

minimizing function then x(T) is the best least-squares estimate of x(T).
The above is equivalent to minimizing, with respect to x(t) and u(t)

0 <1t <T, the expression,

Tf
yen(e G P, | (4.6

-

4

0

subject to the differential constraint,
x = g(t,%x) + X(t,%) u (A.7)
with, x(0) and X(T) free, and T fixed.

By application of optimal control theory the above problem is seen to be

equivalent to the two-point boundary value problem,

. ¥ aH* *

X = 5 (t,x,\) (A.8)

Ao - Z (x50 3 M0) =0 , A(T) =0 (2.9)
3

where,

-1

H*(t,x*, A) = Hy(t)-h(t,x*)\\g + (,e(t,x ) 'll: Oy BV K0 (A.10)

V(t,x') = K (t,x ) W(t,x') k(t,x) (A.11)
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This problem is now converted to a sequential estimator problem by
regarding T as a variable and replacing A(T) = 0 by A(T) = ¢ where
-®<c <=® with’ T and c¢ independent variables. If we define the
missing terminal condition on x by r(c,T), then r(c,T) satisfies the

partial differential equation resulting from the invariant inmbedding

procedure,
ar  ar 3H A
T (BTe) =5 (Tre) (a.12)

A solution to this equation is sought of the form,
r(c,T) = x(T) + P(T) ¢ (A.13)
where P(T) is an n x n matrix and ¢ 1is an n-vector. Substituting this

equation in (A.12), expanding about r(0,T), and retaining terms to first

order in c¢ yields the equations of the nonlinear filter,

Bl&
I

g(T,%x) + P(T) H(T,x) Qly(T)-h(T,z)] (A.1k)

X

=z [_a% (T,ﬁ)]P + P[B‘—i (T,fc)]T + P{HQ[y(T)-n(T,%)1} P
Por'd X

+ k(T,%) V-l(T,fE) kT(T,fc) (A.15)

where,

T
ah,

H(Tﬂ?) = [’a-lj' (T’ﬁﬂ T = ["':]':J
o> X .

J

{(HQ[y(T)-h(T,%)]} is an n x n matrix with iEE column
%

{Haly(T)-h(T,%)1}

%, |w
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Discussion

In general for a system of dimension n, a mechanization of the nonlinear
filter requires the solution of n + n2 first order, nonlinear, ordinary
differential equations. If an adaptive control design is sought then control
1s based on estimated state, i.,e. the estimated staté is viewed as the true
state and the control problem is solved deterministically. In this way the
estimation and control problems are uncoupled but the requirement remains that
the estimation problem be solved on-line in real-time, In this situation
either hardware and/or the economic consequences of computer requirements
could make the realization of the full nonlinear filter (equations (A.1k4)
and (A.15)) impractical. Hence economic or computer capability limitations
force us to seek approximations to equations (A,14) and (A.15) in practical
applications,

In the sequel we will present some results obtained for a specific system

which illustrate a successful approach to the approximation problem,

Experimental Results

Introduction.

Let the plant and observations be described by,

X'+ 3%+ 2+ ax = 5sin b 47 (b) (A.16)

y(t) = x() + 1 t) (A.17)

We wish to estimate x(t), i(t), and the constant parameter a, sequentially.

Adjoining the parameter to the original state equations yields,
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. . el
X, = - 2%y - ale = 3%, + 5sint+ nl(t) (A.18)

Note that a statistical approach would require a knowledge of the mean and
covariance of the noise terms, nl(t) and nz(t). Although this requirement
is removed in the present approach, relative weightings for residual errors
must still be established and these are obtained intuitively, Hence in
Eq.(A.5) we will use Q(t) =1 and W(t) = I. The noise terms will be

generated as follows; nl(t) uniformly distributed in [- 0.5, 0.5] and

n,(t) = 0.1 k () + 0.1 xl(t)l k,(t) (A.19)
with kl and k2 wiformly distributed in [- 0.5, 0.5]. Note that nz(t)

as generated depends on the state. 1In theory, a statistical approach dictates
that ﬂz(t) be independent of the state. In practice this is ignored since it
doesn't seem to make an appreciable difference.

The nonlinear filter for this problem consists of the three-dimensional
augmented state equations and the nine P equations, six of which are independ-
ent since the P matrix is symmetric. Nine initial conditions must be estab-
lished before the (A.14) and (A.15) system can be integrated. If (A.6) is
defined as the "return function" J(c,T), and "dynamic programming' is used
to derive the Hamilton-Jacobi equation for J(c,T), it can be shown that the

following relation exists,

|

1

|
P(T) = 2[JCC(T,£)]'l (A.20)
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Near the minimum of the surface being searched we would expect Jcc to be a
. maximum and the diagonal terms of P to be a minimum, This fact allows a
means to evaluate the "tracking" performance of the filter. TFor the computer
simulations under discussion the estimated state is compared with the true
state which was generated beforehand to evaluate tracking performance., In
actual practice of course we don't know the true state, but we can evaluate
tracking by observing the time evolution of the diagonal elements of the P
matrix,
Equations (A.18) will be solved with initial conditions xl(o) = XZ(O) =1,
a(0) = 0.5 to generate the true trajectories. For this system (A.14) and

(A.15) (the carets on the states have been omitted for convenience) become,

Xl = X2 + Pll(Y'Xl)
‘ }2—-2x-xx3-3x + 5 sin t + p, (y-x,)
2 - 1 371 2 12 1

X3 = p13 (y-xl)

. 2
Pjp = - Py * 2P+ 1

. 2
Pyp = =(2 + 3%%,7) pyy - 3P, - xl3pl3 * Doy = PyPys (A.21)
P13 = = P11P13 * Py

. 2 3 2
Ppp = = 0Py = (W4 Gx3x)7) Py - 2x 7Py - Py 4 1
Do = = 30, = (2 +3%.%,°) Pig - Xy°Pys - Dyp

23 23 371 13 1 %33 12713

. 2

= = + 1
P33 = 7 P13
‘ where the full system has been simplified by the relations Py = Poys
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>

pl3 = p3l, 923 = p32, x3 a, and,
() = x;(£) + 0.1k, (t) + 0.1[x, (t)] k, (%) (A.22)

where the xl(t) appearing in (A.22) is that obtained by integrating system

(A.18) with initial conditions,

xl(O) =0
XB(O) =0 (A.23)
x3(0) = 0.5

In the sequel the system (A.21) will be referred to as the "full" filter.

Initial Conditions.

The first thing to be determined is how the tracking performance of the
full filter depends upon the assumed initial conditions x(0) and P(0).

From Eq.(A.20) and the subsequent discussion we realize that if,

x(0)

i
=]

0 (A.2k)
then,

_l_

P(0) Z[Jcc(o,mo)] 128 (A.25)

However, lacking any a priori information on x(0) it is reasonable to choose
x(0) = 0. Similarly, lacking an analytic expression for J(e¢,T), P(0) must

be chosen intuitively., As a first guess we chose,
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PO)=1]1 3 1 (A.26)
1 1 3

For the computations an integration interval size of .0l and total integration
time of 10 were used.

The results for the full filter with the above choice of initial condi-
tions are presented in Figures 1,1 throughil.h. It can be seen that x(t)
is tracking in approximately 4.5 seconds, i(t) in about 3 seconds, and the
parameter a still has a small offset at the end of 10 seconds, The diagonal
terms of the P matrix are shown in Figure 1.k,

A close inspection of Egs.(A.21) and the "steady-state" oscillations of

the diagonal terms of the P matrix indicates that tracking speed may be

ved by making »p._ >1n__ >0 initially, In this ¢

LT T T YT Ty YT 333 iy 522 ll - v .

x(0) = 0 as before and,

1 1 1
P(O)=]1 10 1 (A.27)
1 1 20

The results are shown in Figures 2.1 through 2.k, Now x(t) tracks in
approximately 3 seconds, i(t) in 2.5 seconds, and the parameter a in k4
seconds, The operation of the full filter has been markedly enhanced by a more
judiciocus choice of P(0).

An examination of the behavior of the diagonal elements of the P matrix
(Fig. 2.4) suggests another variation. These terms settle down to some steady
nmsinusoidal oscillation about some average value after the filter is tracking.
Another case was run with the diagonal elements of P(0O) set to these average
values in order to determine if performance could be thereby improved., Accord-

ingly we set

P(0) = 1 3.2 1 (A.28)
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. The results are shown in Figures 3.1 through 3.4, It can be seen that the
tracking performance of the filter has not been noticeably affected by using

initial conditions (A.28) in place of (A.27).

Filter Approximations,

Examination of the off-diagonal elements of P(t) in the previous case
reveals that these terms all oscillate about a zero average value. This
suggests a possible approximate filter with the diagonal elements fixed at

their initial values, viz, (A.28) and all of the filter dynamics supplies by

the off-diagonal elements of P(t). Setting 511 = §22 = §33 = 0 results in
the approximate filter,
X) =%y + P17 (¥-x7)
}E:-Zx-xx3-3x + 5 sin t + p, (y-x;)
‘I.D 2 1 %% 2 12\ %1
X3 = pl3 (y-xl)
By, == (2 + 3%.%.°%) Py = 3D, - XOp . + Do - D P (A.29)
12 3*1/ Pn 12 T *1 P13 22 T P11P12 .
P13 = = P11Py3 * Pp3
b =-3p,, - (2+3%x°) p - x.9p.. - DD
23 23 371 7 *13 1 P33 12P13
with, pll(t) = pll(O)

Py, (t) = p,,(0)

P () = p,,(0)

. to be solved with the initial conditions,
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x(0) =0 (A.30)

L
[
w
[\V]
=

P(0) (A.31)
Figures 4.1 through 4.4 display the results for this case. A comparison with
Figures 3.1 through 3.4 shows that the approximate filter, (A.29) works as
well in all respects as the full filter, (A.21). An examination of the off-
diagonal elements (not presented in this report) reveals different behavior
between the two cases, as would be expected.

Another approximation is suggested by the fact that plz(t) oscillates
about an average value of - 0.5 over a smaller range than either pl3(t)
or p23(t). Accordingly, we set 512 = 0 and set pl2(t) = plz(o) for the

next approximation,

™
]

1= % * Py xy)

b
Il

3 :
o, == 2y = XpX)T = 3x, + 5 sin b+ po(yex))

™
1

3 = Py3(y-xp) (A.32)

P13 = = Pp3Pi3 * Pos

- 2 3
p23 = = 3p23 - (2 + 3X3xl ) pl3 - Xl P33 - p12p13

with, pll(t) pll(o)

Py, (0)

Py, (%)

P,,(t) = p,5(0)

Py (t) P55 (0)
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to be solved with the initial conditions,

Il
O

x(0) (A.33)

1.3 -0.5 1 |
-0.5 3.2 1 (A.3k4)
1 1 4.5

P(0)

The results for this case are presented in Figures 5.1 through 5.3. A close
comparison with Figures 4.1 through 4.3 reveals that this more approximate
filter works even better (eg. x(t) and a are tracking sooner) than the
previous approximation!

The next approximation made consists of two steps. First, from the
previous computation a value of .077 for pl3(0) is suggested. Second, an
attempt will be made to eliminate one of the remaining differential equations
by replacing it with an algebraic equation. Accordingly the next approximate

filter becomes,

X) = Xg * Py (y-x7)

iz = - 2xl - X3X13 - 3X2 + 5 s8in t + PlZ(Y-Xl)

%3 = Py3(v-xp) (8.35)

2 =3 - (2 + 3x.,x 2) P - X 3P - P

Po3 = = 3Py3 3%1 7 P13 7 ¥ P33 = P1pPys

Pl3 = p23/p]_]_ ‘

to be solved with the initial conditions,

x(0) = 0 (A.36)
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1.3 = .05 .o77
P(0) = |- .05 3.2 1 (A.37)
077 1 Lk,

The results are presented in Figures 6.1 through 6.3. For comparison purposes
the full filter (A.21) was used with initial conditions (A.36) and (A.37).
These results are presented in Figures 7.1 through 7.3. It can be seen that
the approximate filter (A.35) tracks even better than the full filter in this
case!

The final approximation results from eliminating the remaining P matrix
differential equation., In this case both pl3 and p23 are computed from
algebraic equations. The resulting equations will be called the "algebraic"

filter, viz.,

ol
I

1 = X5 + Ppq(¥-xq)

iz - - le - X3xl3 - 3x2 + 5 8in t + plZ(Y-Xl)
%, = 2y () (8.3%)
3
_ - (xl p33)
p13 -

(2 + 3x3xl2 + Py 3pll)
P23 = pllpl3

A solution of the algebraic filter equations with initial conditions,

I
O

%(0) (A.37)

1.3 - .05 0
- .05 3.2 0 (A.40)

P(0)

r



176

is presented in Figures 8.1 through 8.3. These should be compared with the
operation of the full filter (A.Zl), with the same initial conditions, pre-
sented in Figures 9.1 through 9.3, It can be seen that the performance of
the algebraic filter is superior to that of the full filter in this case!

In an attempt to ascertain whether the operation of the algebraic filter
is input dependent the driving function to the system was changed. That is,

Eq.(A.16) was replaced by,

X 4+ 3%+ 2x 4+ axo = £(t) + , () (A.41)
where,
5(1 - &~t/%) , b <10
£(t) = (A.42)
5(1 - e_z)e--t/lo , t>10

The operation of the algebraic filter with 5 sin t in (A.38) replaced by
(A.42) and initial conditions (A.39) and (A.40) is presented in Figures 10.1
through 10.3, For comparison purposes the full filter was used under the same
conditions and those results are presented in Figures 1.1 through 11,3, It
can be seen that the performance of the full filter and approximate filter is

essentially identical!

Conclusions.

Although we have considered a specific example it is felt that the approach
Presented is one which will work for any problem for which the solution has been
demonstrated to converge. Experiments with P(0) can be done to accelerate
convergence, and then approximations to the filter equations can be undertaken
in the systematic manner which we have illustrated.

It is evident from an examination of (A.21) and (A.38) that the latter form

of the filter places much less stringent demands on real-time computation
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facilities and, as we have seen above, results in no deterioration of perform-
ance, In any specific estimation and control application with hardware, space,
and economic constraints, our ability to derive feasible approximations to the

filter equations such as (A.38) may be the factor which determines the overall

quality of the solution to the control problem.
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CHAPTER 3

MINIMUM-ENERGY CONTROL OF ELECTRIC PROPULSION VEHICIES

3.1. Introduction.

This chapter presents the analytical results obtained in the determina-
tion of the minimum-energy controller for a class of electric propulsion
vehicles, The purpose of the controller is the accomplishment of various
control actions for the vehicle while minimizing the net energy flow from a
rechargeable battery. The control voltage is applied to the armature circuit
of a d-c motor with fixed but reversible field excitation which produces the
propulsive force,

The complete mathematical description of the plant is obtained by using
Lagrange's energy methods from classical mechanics and making the following
assumptions;

1. The motion of the vehicle takes place on a terrain whose profile can
be approximated by straight lines, each of which is inclined at a particular
constant slope angle with respect to the horizontal direction.

2. The disturbance torque which appears in the plant equation remainsg
constant during the transient phase of the control. This is a reasonable
assumption if the time interval during the transient phase is much smaller
than the shortest time taken for the vehicle to Pass over a portion of the
terrain with constant slope.

3. The air resistance and viscous friction in the system are proportional
to the speed of the vehicle. This is correct as long as the speed remains be-
low a certain threshold value,

L4, The speed of the vehicle is proportional to the speed of the electric
drive motor.

5. The effective system moment of inertia is constant.
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6. The motor armature inductance is negligible, This assumption is
satisfactory for small motors but is inaccurate for large machines.

T. The motor operation is unsaturated which means that the armature
flux is proportional to the armature current. ,

The plant equation is

f k 1 k
x(t) = - | ==+ .tkb x(t) = — v(t) + —=— u(t) (3.1)
Je  deTa e Je
a
where x(t), %(t) = Angular speed and angular acceleration of the

motor

u(t) = Armature control voltage

v(t) = Disturbance torque

je’fe = Effective inertia and damping coefficients
respectively
r, = Armature resistance

kt’kb = Motor torque and back emf constants respectively

The performance index to be minimized for this problem is selected to be

T

1
E(u) =f — u¥(t) - ri u(t) x(t)|at (3.2)
0 a a

(see Appendix for the derivation of Eq.(3.1) and Eq.(3.2)).

The integrand of Eq.(3.2) represents the electrical power which can flow
from the battery into the motor circuit or from the motor circuit into the
battery over some intervals of time during the controlling process. Therefore
energy transfer takes place into and from the battery. In the transient phase
of the control process, O <t < T, the nature of electrical energy transfer

may be best understood in reference to the following cases:
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1. During the speed-control, whenever a larger positive disturbance
torque is applied to the system, it is required to increase the control
voltage in order to keep the vehicle speed constant. Since the control
voltage is larger than the back emf voltage, the energy transfer takes Place
from the battery into the motor circuit.

2. During the speed-setting, if the disturbance torque is positive and
it is required to increase the speed, the control voltage must be increased
in order to obtain the desired speed. Thus, once more the energy transfer
is from the battery into the motor circuit.

3. During the speed-control of the vehicle if a large negative distur-
bance torque is applied to the system, the control voltage must be reduced in
magnitude in order to maintain the speed constant. Over the interval of time
in which back emf voltage is greater than the control voltage the energy trans-
fer takes place from the motor circuit into the battery. The motor current
reverses its polarity in the armature circuit and its magnitude is controlled
in such a way that the speed of the vehicle is brought back to its desired
value at t = T. In some cases of speed-control at low speeds with large
negative disturbance torques applied to the system, mechanical brakes may be
used to supplement the controller effort,

Lk, During the speed setting of the vehicle under positive disfurbance
torques, if it is desired to reduce the speed of the vehicle by reducing the
control voltage; the back emf voltage becomes greater than the control voltage.
Therefore the energy transfer is from the motor circuit into the battery. This
condition exists until the control voltage exceeds the back emf voltage in
order to supply the necessary motor drive torque corresponding to new desired
speed., The energy transfer is now from the battery into the motor circuit,

The above conditions indicate that in general, E(u), is a measure of net
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flow of energy from the battery into the motor circuit during the transient
phase of the control.

The set of boundary conditions to be satisfied by the state variable
x(t) for three cases of the control action are given below:

Case 1, The speed-control.

x(0) = x(T) =« (3.3)

v(0-) £ v(0+) = v(T) = B

Case 2. The speed-setting.

X(O) = XO (3-)'I')
x(T) = o
v(0-) = v(o+) = v(T) =8

Case 3. The combination of Case 1. and Case 2.

x(0)

I
e

o (3.5)

x(T)

1
Q

v(0-) # v(0r) = v(T) = B
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3.2. The Statement of the Control Problem,

Given the linear time-invariant system (3.1), the performance index
(3.2), a terminal time T, and no constraints on the control wu(t)
determine the control wu(t) which satisfies the set of boundary conditions:

Eq.(3.3) for speed-control

Eq.(3.4) for speed-setting

Eq.(3.5) for speed-control and speed-setting
and minimizes the performance index given by Eq.(3.2). It is important to
note that for t = T, it is required to maintain the vehicle speed constant
at its terminal value until a disturbance such as a new speed-setting or a
new disturbance torque comes into the system. It is assumed that the state
variable x(t) and the disturbance torque v(t) can be measured exactly by

suitable instrumentation.

3.3. The Optimal Solution of the Control Problem.

The Hamiltonian function H for this problem is given by the equation

1 k 1 k
H = — u’(t) - —kﬂ u(t) x(t) + A(t) -<E + -tk:>x(t) - —v(t) + —= u(t)| (3.6)
r r J Jr J J. T
a a e e e e a
where A(t) = Lagrange multiplier.
Pontriagin's minimum principle is used to determine the canonic equations
as follows:

The optimal control is found by satisfying the necessary conditions

maﬁ?) =0 (3.7)

3%H

——>0 (3.8)
u(t)
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Hence using (3.7) and (3.8) in (3.6) give

SE%%T - ;2 u(t) - ;E x(t) + A(t) j2§a =0 (3.9)
since
H 2
m:;;»o for r >0 (3.10)
From (3.9)
w(t) = :—z x(t) - ;3_ A(t) 0<tsT (3.11)
e

minimizes (3.6).

It is seen from (3.11) u*(t) is a linear function of x(t) and (%)
and is unique. Therefore u*(t) is the optimal solution. This is because
the system is linear and the performance index is quadratic. Substituting

(3.11) into (3.6) gives

2

x fe k k 1
H = - li"._xz(t) - =+ £ @A () - tz 2(6) - — v(E)A(t) (3.12)
ura Jo ad.r uje r, Jg
Using (3.12) in
x(t) = 'a%(Hﬂ (3.13)
1) = - 57y

gives the canonic equations




x(t) =
AMtE) = cx(t) + aan(t)
where
fe ktkb
a = —.—+2—.IT-
e JeTa
k 2
t
b =
2J 2r
e "a
ka
C = o
r
a

For convenience substitute
*
x (t) =x(t) - a

v(t)

™
]

in (3.14) to obtain

X (%)

At)
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- ax(t) - bA(t) - %- v(t)

e

a >0

- ax () - bA(t) - %-e - a0

e

cx*(t) + an(t) + co

(3.14)

(3.15)

(3.16)
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A, Open-Loop Solution,

Write (3,16) in matrix form

LY B P N I -l -

= + (3.17)
A(t) c a A(t) coL

The general solution of (3.17) is given by

T ¥ = B D [ h
x (8) | |ep(®) a8 | x| [ e (8)
- * (3.18)
A(%) Qy(t)  Qy(t) | | 5y | | 2,y(%)
Iet
X (%)
z(t) =
A(t)
’-a -b
A =
’.§_ep-aa
L_coc

Ey.(3.17) becomes

2(t) = Az(t) + (3.19)
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Let ) _
Q, (%) Qp, (%)
5(t) =
Q,, (t) Q,, (%)
rkl
k =
oy (8)
p(t) = |
| D, (t)
Eq.(3.18) becomes
z(t) = &(t) k + p(t) (3.20)

In Eq.(3.20) &(t) is the fundamental matrix solution of (3.19) which

satisfies

é(t) = A8(t) with boundary condition &(0) = I (3.21)

where I = Identity matrix, and p(t) is the particular vector solution of

(3.19) which satisfies

p(t) = Ap(t) + r with boundary condition p(0) = O (3.22)

The fundamental matrix is determined from Eq.(3.21) as follows: since A

is time~invariant applying Laplace transform to both sides of Eq.(3.21) yields
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s¥(s) - 8(0) = Ad(s)

since ®(0) =1
3(s) = (sI-a)~t (3.23)
[ fs-a! -b |
a4 | GVDEVa) (R (swa)
Here (sI-A) ~ = (3.24)
c (s+a) |
| (s4/) (sw/a) (s+/a) (sw/a)
where d4d = a2 - be

Inverting (3.24) gives

B .

CoshVd t - & sinmwa t -2 simfa ¢

Va Va
3(t) = (3.25)

. Sinnfa t CoshVd t + & simyfd t
Ja Va

Note in Eq.(3.25)

3(0) = = Identity matrix

The particular vector solution p(t) of (3.19) is computed as follows:

Taking the Laplace transform of both sides of Eq.(3.22)

sp(s) - p(0) = Ap(s) + r(s)
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]
(@]

since p(0)

(sI-4)"T r(s) (3.26)

p(s)

Inverting (3.26) by using convolution integral gives

4
p(t) =§ 8(t-1) r(T) ar (3.27)
0

Lo
Je

Hence substituting (3.25) and r(T) = into (3.27) and

carrying out the integration gives cor

1 1
- == p=agj{ ==

Jeo \/g

Sint\ad t + % (1-Coshyfa t)) + (ca) (1;1 (1-Coshyfd t)

p(t) = (3.28)

- = p-aa|{S (Cosh/ t-1) ) + (ca){ 3= SinhyT t + 2 (Coshyd t-1)
J a ‘E a

Note in Eq.(3.28) p(0) = = Null vector.

Substituting &(t) and p(t) into (3.20) gives the general solution
z(t). The constant vector k is determined in such a way that the two
boundary conditions on z(t) are satisfied for a particular control action.

For speed-control,

I
(@]

% (0)
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Hence

ky =0 (3.29)

Q

k of- 1o B - ay 1, a[l-CoshVd T ¢ [1l - CoshVd T\a
5 b wa\ sinhva T /f Va | sinw/a T /

*
Substituting (3.29) into (3.20) determines x (t) and A(t). Since

*
from (3.15) =x(t) = x (t) + @, the optimal trajectory is given by

x(t) = afCoshyfd t + L-cosVa T\ oy - 8(-% (1-Cosh/d t) -

sinn/a T a;

e

_a_ l-CoshJE T

SinhJ/d t (3.30)
aj_ | sinhva T

The Lagrance multiplier A(t) is given by

x(t)_a-—msm/—t-‘/‘; 1-Coshvd T Coshdt-\/—ES1nhdt-—
Sinwa T b b

1-CoshvVd 1-Cosh¥d T i nhdr- Coshvr‘t l) + a 1-Coshyd T
Sinhfd T bdj, bj, b \/_ Sinhf3 T

Sinnfi b 4 2 [L-Cosh/d T Sinh/d t (3.31)

bje/ci bj d | Sinnfa T

Coshyd t +

Using (3.30) and (3.31) in (3.11) gives the expression for the optimal

*
control function u (t)
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k, a k, alfl-Coshyd T
0 (1) = adl-2 ¢ < ] Cosny@ t + -k-b-+ v Sinhya
2 2j b 2 23 bf\ sinnwa T
e e
kt \/E . \f- 1-Cos
+——Slnhdt+ — cOshJcTt
25 b 2j. b\ Sinn/a T
e e
2 2
kb a a kt kba kta 1-Coshyd T
B |[—F+ — (l-Cosh 4 t) > Sinhfd t -
2jVa 23 %va 23 . 23 “baf \ sinn/a T
e e e €
k.a k.a 1-Coshﬁ T ko1
———— Sinhyd t - — Coshyd t - —— — (3.32)
25 “bva 2b\/— 5.0\ sioh/a T 2je2 b

For speed-setting,
*
x (0) 0=y or  x(0) £a =x(T)
*
x (T) =0

Hence k, =v

2" b Sinhyd T Sinh/a T

1~ h
_c Coshyd T (3.33)
\/a Sinhyd T

k - ﬁCosth a 'J;-B+ ._1_+ a 1-Coshvd T
J b
e

+

a

*
Substituting (3.33) into (3.20) and using x(t) = x (t) + @, the following

results are obtained:

Sinhvd T Sinhyd T

%(£) = v {Coshya b - Costhth\/‘J}+a<Cosh‘/gt+ 1-Coshvd Tio, /3 +

- 84— (1-cosn/d t) - 2 (LCoMT) o5 7 (3.34)

3 4 34 | sinh/a T
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A(t) = v{ - va Sinh/a t +(!§ Cosnfa T\ /i - & Coshya t +|2 SOSVA Thoy /3 4

b b SinhVd T b b SinbVd T
+ Q J- Slnh/_ £ - & Cosh it - JE l-Costh T 1t - a l-CosHJa T
b Sinhvd T b Sinh«a T
/( a2 1 1-C
Sinh\ t Y- B ( - Coshfd t) + —— + —2 os CoshVd
j bd bj, bg\/fi slnhf-T
2
Sinnfa t + -2 1-Coshya T Sinh/d t (3.35)
bj\a jpd | sinna T

Using (3.34) and (3.35) in (3.11) gives

k, a k, a)/[l-Coshyjd T
N ) Coshvd t - (EE " —E—<-) (————-———-— Sinh/d t

u*(t) =y (—+—-——

2 25 b 2 2j b))\ Sinnva T
e e
kEJE Kk \fa CoshVd T Kk k a
+ Sinhyd t - — Coshfa B+ a({l—+ —— — Costh t
25 b 2j Db Sinhyd T 2 2j b
e e e
k  k  al|[l-Cosnd 7\ kﬁﬂ; ky/d [1-cosm/a T
=+ == Sinhyd t + Sinnfd t +
2 2j b SinhVa T 23 b 23 b Sinh/d T
2
a” a kta 1-Coshfd T
CoshJa t -+ (l-CoshJa t) -] — — 5
23, b 23e ba/\ SinhVa T
X, a k,a {l-Cosh dT k
SinhA t - -—-g—- Sinn/a t - —2 Coshfd t - —2—) (3.36)
23, bV 23, bJ&\ Sinh/d T 23,

Note that if vy = in (3.36) Egs.(3.30), (3.31) and (3.32) agree with (3.34),

(3.35) and (3.36) respectively.

For speed-control and speed-setting the results are the same as given by

(3.34), (3.35), (3.36) except that

B's are different.

v(0-) # v(0o+) = v(T) =B i.e.
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B. Closed-Loop Solution.

Recall

x(t) = - ax (t) - DA(Y) - %- B - aq

e

1l

(3.17)

A(t) cx*(t) + an(t) + cx

1]

Equation (3.17) is a two-point boundary value problem. It can be
converted to an initial value problem by making a linear transformation of

the type

x (t) = m(t)A + n(t)

N
(A
W
-~
—

Substitute (3.37) into (3.17) and collecting equal powers of X gives

A () tace) + en®(6) + zam(t) + b} + 2O (6) [Act) + (em(t)+a) n(t) + ac m(t)

+ agd + %‘— B}: 0 (3-38)

e

where x(l)(t) =

=

—~
ct

S
il

First power of A(t)

x(o)(t) =1 Zeroth power of \(t)
Since Eq.(3.38) is valid for all values of A(t), the conditions are:

m(t) + cmz(t) + 2am(t) + b = 0 (3.39)

n(t) + (em(t)+a) n(t) + ac n(t) + ax + %— B =0 (3.40)
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Using x*(T) =m(T) x» + n(T) =0 (3.41)
gives the two initial conditions
n(T) =0

, n(T) =0

which are required to solve (3.39) and (3,&0),

Consider first Eq.(3.39) which represents a first order nonlinear

differential equation of the Riccati type. Substitute T =T - t in (3.39)

to obtain
m(T) - cmZ(T) - 2am(T) - b =0
The boundary condition for (3.42) is m(0) = 0.

et om(r) --2 HO) (3.43)

Substitute (3.43) to (3.42) gives the second-order linear differentisl

equation with constant coefficients as shown below:
;(T) - 2aw(T) + bew(Tt) = 0 (3.h44)
The general solution of (3.4k4) is given by

W T Wt
w(T) = cpe 1 c e e (3.45)

where Cys Gy Two arbitrary constants to be determined

ul=a+vaz-bc a+Jd-
Hy = a -\/az-bc =a - JE




200

Substituting (3.45) into (3.43) gives

BT b T
1l [fecp.e + ¢ u.e
1"1 22
T) = — L6
(") s (3.46)
c c,e + c.e
since n(0) = 0.
From (3.46) Cqly + Colt, =0
Hence
)
1
cz == c_]_ g (3-1‘7)

Substituting (3.47) into (3.46) yields

Sinhyd T

m(’l’):—b ——
a Sitha T - JE Coshyd T

(3.148)

Consider now Eq.(3.40) which represents a first order time-varying linear
differential equation with a constant forcing function. Substitute T = T - t

in (3.40) to obtain

2(1) - (em(7)+a) n(7) - gem(T) - aq - §- B =0 (3.49)

e

The boundary condition for (3.49) is n(0) = 0. The general solution of (3.49)

is given by

T T *
f(cm(&)+a)d& f(cm({,)+a)d{, . -| (em(g)+a)dg
n(t) = n(O)eO + &0 Jr com(4)+a0 + B e at
0 Ye (3.50)
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Since n(0) = 0 Eq.(3.50) becomes

£
] f (em(g) + a)dg

com(4) + ao + -?—)e © at (3.51)

e

.
f(cm(&)+a)d&
n(T) =

o%—a
——————

Substituting for m(T) from Eq.(3.48) into (3.51) and using a change

of wvariable of the form

Va Coshyfd £ - a Sinhfi ¢ = y

in the transformed equation and integrating, the following equation is

obtained:

T) = cx\/:l & si d T - Coshyd T + 1+
n(t) = )(\7— inhfd T - Coshy )

(\/ECosth-aSin drT d

N = (Sinh d T -2 CcoshVd T+ -a—) (3.52)

J'e(\/a Coshyd T - a Sinh\/a fr) ‘/'('1 ‘/a-

Noting from (3.37)

x (1) = x(7) - @ = m(")A + n(r)

a(r) = 20 "OB n(1) (3.53)

Substituting (3.53) into (3.11)

O N TS N F Y (YR R
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Now using (3.48) and (3.52) in (3.54) and noting that T =T - t the closed-

loop solution or feedback control law for this optimization problem is

ko { Ky o - x(t) Cosh/d (T-t) {kt\/&\
Zjeb)+ ° Zjezb}+ Sinhy/a (7-t) zjebf+

; (1 - Coshy/d (T-t)\[kt a (
Sinhfd (T-t) /\B,jezb\E 3:55)

determined to be

u*(t) = x(t){i +
2

Note that in (3.55) the expression (= x(t) Cosh\[d_ (T-t) -;

‘ can be
\  Simn/d (T-t)

written as

(3.56)

0= x(t) . Ley|Ls CoshVA (T-t)
Sinh/a (T-t) SinhVa (T-t)

Therefore (3.55) takes the following form

x k  Ka 1- Cosh\/a (T-t)
u (t) = x(t)(— + }+ x(t) }» } n
2 2jh Sinhya (T-t) e 23,0

1 - Cosh/d (T-t) k2 a - x(t) |k
B {j Sl + {: -} (3.57)
SinhVa (T-t) 23, v/ |Sinh/3 (T-t) 23 b

Figure 3-1 shows the structure of the optimal feedback system given by

(3.57). From Eq.(3.57) note at t =

k k k, Y
u*(T) = x(T){—kB + £ }+ 6{ ; }+{ t } }'c(T) (3.58)
2 23D, 23, 2j b

Since using L'hospital's rule
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Disturbance Torque

ky a (I-Cosh\/a(T-t)\)‘ P
2J¢2b/d \ Sinha/d(T-1) /| B
k
t— |
2Je“b |B
Lol
— *
u™(t)
o Z —»{  Plant ()
—
Summer
k k
b, X9 x(t)
2 T 2ugb) [
k d | - Cos h./d(T-t t
1«/_ ( os h./d(T )> ‘x_(_)_
2Jeb Sin h./d (T-t)
o (i)
2Jeb \ Sinh./d(T-1)
Error=a-x(t)
Desired Speed a x(t) Actual Speed
+ -

Error Detector

Pig, 2-1. The simulation of the optimal control system
given by Eq.(3.57).
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Coshq/— (T-t) +Va Sinhy (T-t)

limit
Sinhvd (T-t) VA cosma (T-t)

t-T

t=T

mt( a-x) | [ -ixw )\ um

t - T \sinb/A (1-t) |-vA Cosnfa (T-t) Va
t=T
If, however, x(T) =0 in Eq.(3.58) for t =T then
k g k
wi(t) = x(T){i + =t p tEJ t 21 (3.59)
2 230 23,

Substituting (3.59) into (3.1) where v(t) = B gives

x(t) =0  for

ct
\%
+=3

(3.60)

If this requirement is met, the controller enters the steady-state phase
of its operation. Therefore it is clear that some means must be incorporated
into the structure of the optimal feedback controller shown in Figure 3-1, to
turn the time varying feedback gains on at t = 0 and to turn them off at
t =T,

In this analysis, it has been assumed that the value of T is known a
priori. As shown in Fig. 3-2 the optimal control function u*(t) and hence
the optimal trajectory x(t) vary greatly with the particular choice of T.
Figure 3-2 describes this dependence for the case of speed-control, Note that
in the plot x(t) vs T, %(t)=0 at t =1,

Ihis salient feature holds for all q's and all B's. The proof follows
from the use of Rolle's theorem which guarantees that x(t) = 0 at some point
t which satisfies the inequality 0 <t < T, Using Eq.(3.30) to obtain

o+ p —2

x(t) = _iafa (Cosh\/a t - Cosh/d (T-t) (3.61)
SinhVa T

\
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u®(t); 0<t<T=3T"
W¥(t); 0<t<T=2T*

}

x(1); 0<t<T=T* x(1); 0<t<T=2T" x(t); 0<t<T=3T*

L |
T™ 2T™ 3TF ¢

Fig. 3-2. The behaviour' of the optimal control
u*¥(t) and the optimal trajectory x(t) for a
particular set of o and B as terminal time T

varies for the case of speed-control.
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. x(t) =0 in 0 <t <T if and only if
Coshfd t = Coshyd (T-t) (3.62)

The solution of Eq.(3.62) is t = % . Since there is a time-delay

% o ¥ . T
between u (t) and x(t), u (t) =0 at a time t such that 0 <t < =

5
Fig. 3-3 shows the relationships between u*(t), x(t) and T for the
case of speed-setting. Note that ﬁ*(t) =0 at a time t which is less
than the time t for which x(t) = O in the interval O < t < T,
From the observation of the above figures it is clear than the terminal
time T must be selected to satisfy the following requirements:
1. The optimal control u%(t) and the optimal trajectory x(t) remain
within acceptable limits under all practical working conditions.
’ 2. The desired value of x(t) at t =T 1is obtained as soon as

possible in a given control action. This is in complete agreement with the

assumption 2 in section 3.1

C. Practical Considerations.

As shown in Eq.(3.57) the feedback control law u*(t) requires the
measurements of the speed x(t), the disturbance torque P and the desired
speed «. The speed x(t) may be measured by a tachogenerator or a suitable
electronic pulse counter which gives a voltage proportional to speed. The
disturbance torque £ 1is a function of sine of the slope angle of the terrain.
Therefore, it is required to have a device which produces a voltage proportional
to slope angle of the terrain. The desired speed setting o is obtained by
means of a potentiometer connected to a voltage source. These analogous

. measurements are multiplied by time varying gains and added linearly to produce

*
the optimal control u (t).
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The Optimal %
Trajectory x(t); O<t<T=T
x(t); 0<t<T=2T* x(t); 0<t<T=3T"*
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ut);0<t<T=T"

Fig. 3-3. The behaviour of the optimal control
u*¥(t) and the optimal trajectory x(t) for a
particular set of o and B as terminal time T
varies in the case of speed-setting.
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When a disturbance comes into the system any error (a - w(t)) may be
used to activate an auxiliary electronic logic circuit (not shown in Fig.
3-1) which produces the time varying gains shown in Fig. 3-1.

For t =T the logic circuit interrupts all output signals of time
varying gains and hence x(t) =a for t = T. The optimum controller which
is determined has the following characteristics:

1. In any control action, it brings the speed to its desired value
at t =T, i.e. x(T) =«

2. It minimizes the net flow of energy from the battery during the
transient phase of the control,

3. With the help of an auxiliary electronic logic circuit it keeps the
speed constant at its desired value for t = T until a new disturbance comes
into the system i.e. x(t) =0 for t = T,

The operation of the optimal controller is illustrated in Fig. 3-4 for
three different control actions, The reason for Jjumps on the value of u*(t)
at t =T can be seen most easily in referring to Eq.(3.58). Here u*(T)
contains a derivative term i(T) which is made zero for t = T by the action
of auxiliary electronic logic device. Thus if i(t) is negative as t - T
then there is an upward jump in the value of u*(t) at t =T and if x(t)
1s positive as t - T then there is a downward jump in the value of u*(t) at

t =T,

D. Discussion of the Results.

The minimum-energy controller is determined to be a linear time~varying
system. The engineering construction is costly but can be done with the help
of present technology. Since the controller is required to perform as many
times as the need arises during its lifetime, the initial and maintenance costs
may be negligible in comparison with the economical savings which will be gained

with the best possible use of the energy source. The asymptotic optimal solution
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~Y

-

Case (I) Speed-Control Case (2) Speed-Setting
v(t)d vit)}
v(0O+)=8B v(0-)=8 v(O+)=8
v(O-)
—
u®(t) 4 t J*a
/— m—
ES—— \
- *
x(t) 4 Tt xt)
L Xo
ah—.—
T |

Case (3) Speed-Control and Speed-Setting
v(t)d v(0+)=8

v(O-)
T 't
u¥(t) 4
\
—
x(t)} T t
Xo

a —————————
-
T t

Fig. 3-4. The operation of the optimum feedback controller.

X
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for this control problem does not exist as shown below:

Assume T ~ @, From Eq.(3.48) and Eq.(3.52)

-b

1lim m(t) = .6
T}: (t) "y (3.63)
lim n(t) = - o + B— (3.64)
Toeo jfa |

Substituting (3.63) and (3.64) into (3.54) gives

% k a k k k,a
u (t) =x(t){5+L--—t—\€+ a{ t . } (3.65)
Zje b 2je bvg

2 2j b 2jb

Using (3.65) in (3.1) gives the following first order linear differentisl

equation with constant coefficients:

x(t) + VA x(t) = - =2—p (3.66)

Va5,

The solution of (3.66) is given by

dJe

x(t) = x(0) e"/?1 b e (1 - e'ﬁ1 t) (3.67)

From (3.67) it is clear that at steady state

x(t) = - B g (3.68)

clearly, the terminal condition on x(t) is not satisfied,
The reason for this can be seen from Fig, 3-2. Namely as T - « the
control voltage remains very small until the terminal point is reached and

becomes infinite as the terminal point is reached, Therefore if B is
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positive the steady state speed is negative and if B is negative the
steady state speed is positive,

The performance of such a controller is not satisfactory from an
engineering point of view.

Note in the above analysis no constraints are put on the control variable
u*(t) and the state variable x(t). This of course is not the case in practice.
However, if these constraints are included in the formulation of the optimal

control problem, mathematical complications arise and the solutions are no

longer linear.

E. Future Work.

Future work involves the accomplishment of the following:

1. The determination of the optimal solutions for all cases considered
above by taking motor inductance into account.

2. The formulation of the optimization problem for a traction motor whose
dynamical behaviour is described by a first order nonlinear differential
equation,

3. The formulation of the optimization problem for a dc motor with

armature and field controls.

¥. Appendix.

The electrical energy input into the plant described by
je x(t) + fe x(t) = kt i - v(t) (3.69)
1, L, (8) + r 1 () =u(t) -k x(t) (3.70)
is given by

T
B(u) = f u(t) 1,(t) ab (3.72)
0]
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. where ia = Armature current, La = Armature inductance,

If 4, =0. From (3.70)

(k) - kg x(t)
i = ) (3.72)

Substituting (3.72) into (3.69) and (3.71) give the following set of

equations:
f k 1 k
%(t) = - |+ jtfb x(8) = 5= v(t) + 3= u(t) (3.1)
e e 8 e e a
and
rlr . x5
5 = [ |7 220 - 2 we) xe) | at (5.2)
a a

@ °
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CHAPTER L

SENSITIVITY CONSIDERATIONS IN THE DESIGN OF FEEDBACK CONTROILS

4.1. Introduction.

In optimum control theory, one assumes a mathematical model for the
physical process and then determines either a control function or a control
law that minimizes a well defined performance index, subject to various types
of constraints, The implementation of the above control on the actual
physical process may or may not produce the calculated optimum results,

One of the reasons for this is usually the parameter variations in both the
process and the controller, When design is carried out on the basis of an
assumed mathematical model, it is important to know how the actual performance
deviates from the theoretical results. How does the value of the performance
index change for changes in process parameters, how do the trajectories

change for changes in process parameters are some of the important questions
that are assumed under the title of Sensitivity Analysis.

When a meaningful definition of sensitivity is made in relation to a
given problem, methods of reducing sensitivity are known as minimum sensitivity
design methods.

In the subsequent sections, these problems will be examined.

4.2, Review of Literature.

Let the dynamic process be described by the ordinary differential equation

1%
i

= i(t,}_c)}_l,g) (h1)

x(t

n
o

o) (k.2)
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where x: n x 1 state vector, u: mx 1 control vector, a: px 1

parameter vector and c: n x 1 initial state vector.

*
Suppose it is desired to determine a control u (t,x), tp =t =T,
such that the following performance index is minimized
T/‘
Iw) = | e(txu) at (4.3)
tO

where g(+) is a scalar valued, non-negative function of its arguments.
By the well known procedures of optimum control theory, one can obtain

the optimum feedback control and let it be denoted by
* (
u o= gt 59) (4.4)

where go is the nominal value of the parameter vector. Using the control
(4.4) in the actual system with the parameter vector Q, the trajectory and

the value of the performance are denoted by

8, %, 2) and I(e,2,q,) (L5)

respectively.

In actual practice, if ¢ = &y, then I(E,gb,go

the theoretically computed minimum value and x(t,t

) will coincide with
o,go,go) will coincide with
the theoretically computed trajectory.

The literature consists mainly of examining (L4.5) or variations of it.

Dorato [1] considers the expression for Ly which can be written as

G
ol 3’ & ox
-&:z‘ -a—z"a;dt ()4.6)
t
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a . g &
where <2 1is a row vector with components =2 and — is a n x P
x xx axi o
matrix with elements -—pi . The latter is evaluated by the usual varia-
J
tional formuls
a4 =l w e o
T S - = = s s =0 (L.7)
\dt X - X x = i |
: a0ty = | =lo=a V=t
of oy L
where 3_5 is a nx nafmatrlx with elements -BTJ and @- isa nxp
matrix with elements —— .
J
For small variations of parameters from the nominal Xy the change
in the performance index is given by
ol
= 9o, I
AL = =+ da (4.8)

where do 1is a p x 1 column vector with elements Q =y . This allows the

0.
i
designer to determine the performance index sensitivity to small changes in the

parameters from their nominal values, In any given situation, one should be

careful in assigning meaning to either the performance sensitivity vector %

or its norm H%H

Turning now to the so called trajectory sensitivity, the situation is as

follows. Consider the system (4.1)-(L.4) and let it be desired to examine the
variations of the trajectory x(t, to,go,g) due to small changes in the
Parameter values. It is easy to see that the variation of x with respect

to a parameter oy obeys the linear differential equation

d ‘ax  [of ox ’ag‘g("ag \fax 3f
—_— = == =t == == l— | — (4.9)
x .
with = at t = 'to and Oti = O!Oi 1s 9. (h.lO)

1
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For the nominal %05 the various Jacobians in (4.9) can be evaluated along

the trajectory corresponding to %, and thus (4.9) is a linear, time-varying

differential equation,
ox
?%%' are called the trajectory sensitivity functions by Tomovie [2]. Thus,
i
changes in the trajectory to small changes in the parameter can be easily

computed,

In order to use this approach to design less sensitive systems,

ax
Dougherty, et.al. [3] propose the following. Letting § A Eé%" (4,9) and
i
(4.10) can be written
§ = A(t) S+ b(t) (4,11)

5(t,)

I
lo

(k.12)

This is adjoined to the plant equations (4.1) and (L4.2) and a new performance

index is defined as

I= ' [g(t,xu)+ h(t,5)] at (L.13)
tO
where h(+) penalizes the sensitivity terms, It is not possible to solve the

above optimization problem directly and one must assume some form for the

control law. For example, one may assume
u=[Klx+[K]8 (L1k)
and then determine the elements of the matrices Ki and Ké to minimize (u.l3).

Even if this can be done, to implement the control, one must generate S

corresponding to the actual parameter value @ which is assumed unknown., The
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above authors get around this difficulty by computing S always for

a = go (known). In the examples they have presented, they have chosen to
ignore the feedback from S completely. The results are not conclusive at
the moment.

It seems that this approach will not be satisfactory in general because
it depends so much on the calculations done on the basis of the nominal value,
%oy of the parameter and at best, it is a local theory. If one assumes that
the actual parameters are in a region around %oy the method may yield
satisfactory results when this region is very small. Actual experiments have
to be carried out for a given situation to assess the meiits of this approach.

The main motivation for this approach seems to be that it can be forced into

the framework of the standard optimum control problem.

4,3, Discussion.

From what has been said, it is clear that one can compute the changes in
the performance index and (or) changes in the trajectory (using a suitable norm)
for small changes in the parameter values from their nominal ones [5]. Unfor-
tunately, it is not easy to establish the "smallness" quantitatively except
through experimentation on a given problem,

One could augment either some measure of the performance sensitivity vector
or the trajectory sen;itivity function to the primary performance index (M;B)
and compute an approximate control law, As has been observed in the literature,
this approach need not always result in an insensitive system. The extent to
which parameter variations are tolerated must be determined by simulation. The
biggest drawback of these methods seem to be that they are forced into the
optimal control theory formulation in an artificial way and the merits of this

must be determined by simulation experiments,
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4,4, Min-Max Formulation.

In the approach of Dougherty, et,al. referred to earlier, it was seen
that they assumed a feedback structure and then computed the free parameters
in this structure to minimize an augmented performance index. Let us
examine this problem in a different way.

Suppose we know that the parameter vector Q Dbelongs to some set M,

For example, we may have reason to believe that my < Q; < Mi' Similar bounds
on the other parameters may be specified. ILet us also suppose that a fixed

feedback structure is chosen given by

u = y(y,b) (4.15)

where y is the output vector (measured) related to the state X via a
known transformation (sensor dynamics for example) and b isa rx1 vector
of adjustable controller parameters to be chosen optimally. The reasons for
assuming the structure of feedback is fully discussed in Ref. k.

Let us denote the minimum value of (4.3) when optimized subject to (4.1)

(via the methods of optimum control) by

I(c,2) (4.16)

Let us denote the minimum value of the performance index

T .
[ altn e (@p) at (4 .17)

%o

optimized subject to

I%e
|

= £(t, %5 4(y,b),2) (4.18)

x(t,)

I
o
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by

V(e,9,b) (. 19)

In general, the minimizing value of b depends upon the initial
condition c¢. What is reasonable therefore is to match the performance index
surface (+.,19) with (+.16) in some suitable sense.

Since the performance index plays a crucial role in optimization and
one is trying to find a control which minimizes the performance index, it is
reasonable to ask if the performance index surface with a fixed controller
configuration can be matched (in some suitably defined sense) to the performance
index surface of the optimum system. With this motivation, one is naturally
lead to find b according to the criterion

v(e,%b) - I(c,Q)

Min Max Max (4.20)
beB ceC QeM He,a)

where B 1s the set of controller parameters and C is the set of allowable
initial conditions,

In essence what this min-max operation does is to synthesize a controller
that guards against the worst initial condition and the worst parameter vector.
In actual practice these worst cases may not arise which merely means that the
controller is designed in a very conservative way.

It must be mentioned that the operations involved in (4.20) are not easy
from a computational point of view but this is the price one has to pay for a
realistic approach to the problem, We shall illustrate below the details for a

linear problem and give computational results.
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Examgle.

Consider the second order linear system described by

1
[

X = x, xl(O) =

o]
]
]
2
+
[«
1
(@]

2 2 %,(0) =

where 0.2 <@ <2, The set M is the segment [0.2,2] on the real line.
In this problem, we shall assume that the initial conditions are Precisely
known.

Let the primary performance index be
2 2 2
I -./((xl + X7 U ) dt
0

The optimum feedback control and the optimum performance index are found

to be

2
u(xl,xz,a) =-x + (o -\Ja +3) X, and
I(a) = Jof + 3 respectively.

Suppose we fix the controller configuration (variations on this are

possible) to be

U= = lel - szz

and want to choose Kl and Ké in the Min Max sense. With this fixed

controller configuration, the value of the performance index is given by
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2 2 a
1+ K™+ Kl(l + K, ) . (K2 + a)(l + K, ) )

Vi{a,K ,K,) = KK
2 2
z(K.2 + Q) 2K,

To illustrate the approach, let us set K1 = 1 and merely find the
optimum K2 in the min max sense., The results are given below, K2 was

restricted to the range [0.2,2.0]

1.k

K2 opt

o opt = 2.0
The value of the performance index is 0.0316. To get an idea of how the
trajectories behave, we can compute the closed loop poles of the system when

the feedback is - x; - 1.4 x, and @ assumes the values 0.2, 1 and 2,

a { Closed Loop Poles I | v
0.2 | -0.8 +3 0.6 | 16w | 1.743
1 - 1875, -0.525 | 2.000 2.000
2 é -3.05 , -0.35 2,645 2.713

¥

If the interest was more on the trajectories than the performance index,
one could have determined a feedback gain that would minimize the maximum
deviation of the controlled trajectory from the optimal one, Here, we choose
to concentrate on the deviation of the performance index instead,

min max design when u = - Kx

1

If we fix the controller configuration as above and seek for a value of
K (X 1in the range [0.2, 2.0]) in the min-max sense, computational results
show that Kbpt = 0.2. One could compute the value of K such that the

trajectories of the controlled system deviate from those of the optimum in a

min max sense, Experiments were conducted for x7(0) =1 and XZ(O) =1,
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- Kx

1 o the results were

For u=-x K in [0.2, 2.0],

K =0.6

The location of closed loop poles and the values of I and V are

summarized below.

o Closed Loop Poles I v
0.2 ~ok £309 | sz | em
1.0 - 0.8 +Jjo0.6 5.0 5.1
2.0 - 0.k7, - 2.13 5.29 5.3

For the control configuration u = - le, the optimum value of the
feedback coefficient was 0.8. The closed loop poles, values of I and V

for different values of a are summarized below.

o] Closed Loop Poles } I l \i
0.2 - 0.1 3 o0.88 T 5.2 . 15.95
( i
1.0 - 0.5 +£j 0.74 i 5.0 g 5.79
2.0 -0.55, -1k | 529 | 57
{ !

4.5, Discussion,.

In the above example, we assumed fixed initial conditions and thus
eliminated the maximization over the initial condition set. It is not too
difficult to include this ma#imization but the computational effort increases.
To avoid multiple minimization and maximization operations, we may proceed as

follows. Considering the above numerical example, we found that KO = 1.4

pt
in the plant equations and find

and ao = 2,0. Now, we may use « = 2.0

ot =

a new value of K which minimizes the maximum deviation of the performance
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index with respect to a given initial condition set, This may or may not
yield a satisfactory solution because the min and max operations cannot be
interchanged in general.

On the basis of the limited amount of digital experimentation, it is felt
that a min-max design is feasible whether one chooses to design feedback con-
trollers on the basis of performance index deviations or trajectory deviations.
The computational time increases as the number of variables over which min-max
is done increases but it is felt that this should not be a great disadvantage
because the design is carried out off line.

A simulation experiment based on this design procedure should be conducted

to assess the merits of this approach.

4L.6. Min max Design Based on Performance Index and Trajectory Deviations,

In the earlier sections, we have seen an approach to the design of feedback
controllers based on minimizing the maximum deviation of the performance index.
While this design accomplishes what it is intended to accomplish, the resulting
trajectories may vary quite a lot depending on the value of the unknown plant
parameter, If one is interested in deviations on the trajectories, it is
appropriate to consider a design based on the performance index

+ W e |x

(4.21)

1

* x*nzi

5 %

where K refers to the fixed configuration feedback controller parameter, o
*

refers to the plant parameter, Xg (t) refers to the trajectory of the system

with the fixed configuration controller (also called the specific optimum

trajectory) and x*(t) refers to the system trajectory in the optimum controller.

is an appropriate norm and W is a relative non-negative weighting factor.
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The first term in (4.21) corresponds to the deviation in the performance

‘ index and the second term corresponds to the deviation in the trajectories.

To illustrate this line of design approach, the following illustrative

example is considered. The plant is governed by

Il
(-

Xl(O)

He
n
o]

X, ==-0X, + u x2(0)=0
and the performance index is

2 2 2
j(xl+x2+u)dt
0

‘ Let a be in the range [2,4].

The optimum control is

{

by
t

a -\;"‘oz2 +3 ;xz

*
U = = x. +
1

and the optimum closed loop system is

2 +xl=O

Xl +V3 + Xl
which results in

At At
* 1
xl(t)=cle + e, e

’ where




>
[

(
-

5 "\/3 +Q

[

g
1]
I+~
0D
]
Q
QN( |
]
[
O

e1 = Ao/ (hp=Ap)

and cz = )‘.l/()\l‘)\z)

ILet the specific optimum controller be fixed as

where K is to be chosen in the range [0.1, 0.9].

. With this controller, the specific optimum trajectory is given by
xs(t) =A e + A e

where

|
Ine] B

By = [-a+\/a2-hK}
:-a -\/of - hK?

Ay = uo/(ugmny)

M o
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Now the problem is to choose the feedback parameter K according to

the performance criterion

r ' -

Min Max LV — Wf(xs(t) - x*(t))zdt;
L A )

K «a

where V and I are defined as in Section L Lk,
A numerical experiment results in the values of K = 0.8 for W = O

and K = 0.9 for W =2.0. The closed loop poles are shown in the following

table,

W=0
a Closed Loop Poles
2.0 - 0-55 ] - l.""5
k.o - 0.22, - 3.78

W =2,0
o Closed Loop Poles
2.0 - 0.685, - 1.315
k.0 - 0.2k , - 3,760

It may be noted that the/location of the closed loop poles by themselves
may not yield much information. A piot of the trajectory xs(t) will have to
be examined to decide if an adequate design has been accomplished. In this
example, if we plot the xs(t) trajectory for W=0, a=2.,0 and 4.0 and
W =2.0, =20 and 4,0, we find the following. The trajectories for

Q@ =2.0 and a =L4,0 are closer together when W = 2.0 than when W = 0.0

which is as it should be. But, the addition of the trajectory deviation term

in the performance index has not produced dramatic results in this example, This
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is partly due to the particular nature of this example where the trajectories

are always well damped exponentials for values of « between 2.0 and 4.0.

Even though the results are not spectacular in this example, this method

merits consideration in other problems where the min max design procedure is

used.
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